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Abstract
Motivation: Advances in bacterial promoter predictors based on machine learning have greatly improved identification metrics. However, exist-
ing models overlooked the impact of negative datasets, previously identified in GC-content discrepancies between positive and negative data-
sets in single-species models. This study aims to investigate whether multiple-species models for promoter classification are inherently biased 
due to the selection criteria of negative datasets. We further explore whether the generation of synthetic random sequences (SRS) that mimic 
GC-content distribution of promoters can partly reduce this bias.
Results: Multiple-species predictors exhibited GC-content bias when using CDS as a negative dataset, suggested by specificity and sensibility 
metrics in a species-specific manner, and investigated by dimensionality reduction. We demonstrated a reduction in this bias by using the SRS 
dataset, with less detection of background noise in real genomic data. In both scenarios DNABERT showed the best metrics. These findings 
suggest that GC-balanced datasets can enhance the generalizability of promoter predictors across Bacteria.
Availability and implementation: The source code of the experiments is freely available at https://github.com/maigonzalezh/Multi 
speciesPromoterClassifier.

1 Introduction
Bacterial promoters are essential DNA regions that regulate 
gene transcription initiation, facilitating specific binding to the 
DNA of the RNA polymerase (RNAP) holoenzyme (Eσ), a 
multi-subunit complex composed of the core RNAP and the σ 
factor (Mej�ıa-Almonte et al. 2020). RNAP binding to pro-
moter regions is improved by the σ factor, which recognizes 
cognate sequences with consensus motifs rich in AT (−35 and 
−10 elements) in comparison to the rest of the bacterial ge-
nome (Abril et al. 2020, Klein et al. 2021). Besides the house-
keeping sigma factor (σ70 in Escherichia coli, σA in Bacillus 
subtilis), alternative σ factors act in response to environmental 
signals, leading the RNAP to other consensus sequences, 
changing the transcriptional profile to improve cellular fitness 
(e.g. heat-shock response, stationary phase regulation, nitrogen 
regulation, flagella) (Bervoets et al. 2018, Abril et al. 2020). 
Due to the great number of σ factors a single strain holds, 
from 1 to more than 100 (Gruber and Gross 2003, Lonetto 
et al. 2019), sequence patterns that suggest the presence of pro-
moters generally vary between different σ factors and bacterial 
species, hindering identification efforts in bacterial genomics.

Advances in computational biology are promising for pro-
moter identification in bacteria (Cassiano and Silva-Rocha 
2020). Many promoter identification tools based on Machine 
Learning (ML) have been developed, mainly focusing on bi-
nary classification (promoter or non-promoter sequences) us-
ing E. coli or B. subtilis as model bacteria (Umarov and 
Solovyev 2017, Liu et al. 2018, Wenying et al. 2018, 
Rahman et al. 2019, Cassiano and Silva-Rocha 2020), or 
promoter classification (σ70 or other subclasses) (Amin et al. 
2020, Shujaat et al. 2020, Hern�andez et al. 2022). Different 
ML techniques have been applied to achieve this problem, 
including Random Forest (RF) in IPromoter-2, and 
Convolutional Neural Networks (CNNs) in iPromoter- 
BnCNN, pcPromoter-CNN, PromoterLCNN, and iProL 
(Amin et al. 2020, Shujaat et al. 2020, Hern�andez et al. 
2022, Peng et al. 2024). Although these predictors are able to 
improve our understanding of σ promoters in model bacteria, 
bacterial diversity is much larger, requiring complex tools to 
identify promoters in multiple species. Chevez-Guardado and 
Pe~na-Castillo (2021) proposed Promotech, a multiple-species 
bacterial promoter predictor trained on datasets from nine 
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species and evaluated on four additional species using a single 
model. Zhang et al. (2022) proposed iPro-WAEL, an ensem-
ble learning model combining RF and CNN for promoter 
prediction trained with human sequences and evaluated 
across seven species (including Bacteria). TIMER, an ap-
proach based on siamese neural networks for bacterial pro-
moter identification in general and species-specific models, 
was created using three siamese neural networks equipped 
with Attention layers across 13 species (Zhu et al. 2023). 
Although multiple species models are currently available, 
biases inherent to the addition of more than one species have 
not been assessed in ML models.

A significant area of research in deep learning is natural lan-
guage processing (NLP), where the Transformer architecture 
has driven the development of large language models (LLMs) 
by leveraging the attention mechanism to capture relationships 
between distant elements and enable parallelized training. In 
this context, Bidirectional Encoder Representations from 
Transformers (BERT) introduced bidirectional contextual repre-
sentations, allowing fine-tuning for specific tasks (Devlin et al. 
2018). This success expanded into genomics with DNABERT, a 
BERT-based model pre-trained on human genome sequences, 
enabling contextual embeddings for tasks such as promoter de-
tection (e.g. DNABERT-Prom) (Ji et al. 2021). Nucleotide 
Transformer was later developed to effectively capture sequence 
dependencies (Dalla-Torre et al. 2024), followed by 
DNABERT-2, a model with enhanced tokenization and atten-
tion mechanisms, reducing resource expenditure (Zhou et al. 
2023). Transformer-based models have not been evaluated in 
bacterial promoter predictors for multiple species.

Regardless of the great advances in promoter identification 
using ML-based predictors, negative dataset selection and its 
impact on classification have been scarcely evaluated. 
Promotech used negative sequences extracted from genomic 
regions lacking previously reported promoters, while TIMER 
and iPro-WAEL extracted random genomic sequences fol-
lowed by a filtering step (Chevez-Guardado and Pe~na-Castillo 
2021, Zhang et al. 2022, Zhu et al. 2023). Single-species pre-
dictors (e.g. iPro70-FMWin, 70ProPred, CNNProm) generally 
use random sequences from coding, non-coding, or intergenic 
regions, but no consensus has been established. Cassiano and 
Silva-Rocha (2020) systematically compared promoter predic-
tion tools for E. coli, evaluating detection metrics against 
a pool of true promoters and negative sequences generated 
randomly with an AT distribution similar to promoters. 
Benchmarked tools achieved regular detection performance, 
as reflected in accuracy values between 0.72 and 0.76 and spe-
cificity (Sp) from 0.51 to 0.69, suggesting a propensity to de-
tect false positives (FP). The authors attribute this outcome to 
a bias involving low AT (higher GC-content) in negative 
sequences used as training datasets, evidenced by high vari-
ability in Sp values. GC-content bias in negative datasets has 
only been suggested in E. coli by Cassiano and Silva-Rocha 
(2020), while multiple-species models count with a larger GC- 
content diversity which can reinforce this bias. Besides, data 
from experimentally validated promoter sequences from dif-
ferent species are scarce, with large differences from tens to 
thousands between species datasets (Su et al. 2021).

To address the aforementioned challenges, the aims of this 
study are: (i) to evaluate whether GC-content classification 
bias exists in multiple-species ML-based models using a nega-
tive dataset extracted from CDS; (ii) to assess the feasibility 
of reducing bias by generating synthetic random sequences 

(SRS) that simulate the GC-content distribution of the pro-
moters available for each species; (iii) to evaluate the effec-
tiveness of LLMs in the context of promoter classification 
across various species through a single model.

2 Materials and methods
Designing ML classifiers for promoter detection presents a 
challenge due to the difficulties in creating a balanced dataset. 
While obtaining bacterial promoter sequences (positive data-
set) from curated databases, such as RegulonDB (Salgado 
et al. 2023) or the Prokaryotic Promoter Database (PPD) (Su 
et al. 2021), is straightforward and has been used previously 
(Chevez-Guardado and Pe~na-Castillo 2021), formulating an 
appropriate set of non-promoter (negative dataset) sequences 
for training is still not standard. Here, we inquire into the ef-
fectiveness of two strategies for generating negative datasets: 
extracting non-promoter sequences from CDS of each strain 
genome and synthesizing random sequences (SRS) artificially 
to counterbalance GC-content distribution of the positive 
dataset. Although synthetic data could cause model overfit-
ting, previous works in other subjects have used this ap-
proach to generate balanced datasets with good results in real 
data (Gao et al. 2023).

The general framework comprises a data pre-processing 
stage, followed by a training stage (Fig. 1). Species included 
were selected based on the promoters available in the PPD 
according to criteria such as the number of sequences, evolu-
tionary relatedness, and GC-content. Two datasets were devel-
oped for general assessment of ML models, both sharing the 
promoter data differing in the construction of the non- 
promoter sequences. Non-promoter sequences were randomly 
extracted from coding sequences (CDS) or composed of SRS 
based on species-specific GC-distribution of the promoter 
data. Following this, a training workflow was applied for 
each model.

2.1 Species selection
PPD includes promoter data of bacterial and archaeal species, 
comprising many entries with <200 promoter sequences per 
organism. Only species with >200 promoters were pre- 
selected for this study (Supplementary Table S1). To ensure 
evolutionary relatedness between promoter sequences, we 
only selected species from one phylum, Pseudomonadota, 
which exhibited the largest number of promoter sequences 
(n¼ 80 448), and a greater diversity in GC-content and gen-
era to enrich the robustness and sequence representation 
within the positive dataset.

2.2 Dataset pre-processing
Promoters (81-nt, -60 and þ20 nt from the transcription start 
site, TSS) were obtained from PPD, including all the sequen-
ces from each Pseudomonadota strain with >200 promoters 
(P0; Fig. 2). For the CDS negative dataset, random 81-nt 
were extracted from the CDS of each genome assembly 
(NCBI) associated with the strains included in the positive 
dataset (Su et al. 2021). For the SRS negative dataset, the 
Kernel Density Estimator technique was used to approximate 
a probability distribution function of GC-content based on 
the promoters available in P0 per species included (ei); then, 
the same function produced GC-content values delivered to a 
random generator algorithm to create the SRS dataset 
(length¼81-nt; Supplementary Algorithm S1). In both 
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negative datasets (CDS and SRS), twice as many sequences 
were extracted for each species in comparison to the positive 
dataset. This ensures an equal or greater number of sequences 
in the negative dataset available after filtering, allowing for 
balanced promoter and non-promoter sequences in subsequent 
phases without compromising promoter data. Following this 
phase, the raw non-promoter sequence sets C0 and R0 were 
obtained for CDS and SRS, respectively.

Initially, a filtering operation is applied within each raw data-
set (P0, C0, and R0) to avoid repeated sequences. Subsequently, 
a cross-filtering operation is performed between the promoter 
and non-promoter datasets. This step filters out non-promoter 
sequences similar to the promoters P, resulting in filtered non- 
promoter C and R sets (Supplementary Table S2). The entire 
process utilizes the CD-HIT program (Fu et al. 2012) with a 
threshold of 0.8 to ensure effective redundancy reduction (Le 
et al. 2022, Zhu et al. 2023). Following the filtering stage, pro-
moter and non-promoter data were integrated based on their 
respective origins. For each species strain, non-promoter 
sequences were extracted from C and R. The quantity of non- 
promoter sequences extracted matches the number of available 
filtered promoters after the filtering phase, ensuring a balanced 
dataset between positive and negative datasets. Subsequently, 
the non-promoter sequences were combined with the extracted 
sequences to form the datasets DCDS and DR.

2.3 Training pipeline
Model selection. We evaluated Random Forest (RF), 
Convolutional Neural Networks (CNN), and BERT-based 

architectures for promoter prediction. RF models aggregate 
multiple decision trees to form an ensemble, enhancing ro-
bustness and reducing overfitting. CNN, optimized for grid- 
like data such as DNA sequences, were also used to identify 
promoter regions. BERT-based models, including 
DNABERT, DNABERT-2, and Nucleotide Transformer, 
were used to effectively interpret nucleotide sequences, 
addressing the unique challenges of genomic data analysis. 
Detailed configurations for each model are provided in 
Supplementary Note S1.

Input encoding. For both the CNN and RF models, the 
sequences in the dataset were encoded using one-hot encoding. 
In this scheme, each nucleotide was distinctly mapped to a 4D 
vector: A ! ð1;0;0;0Þ, C ! ð0;1;0;0Þ, G ! ð0;0;1;0Þ, and 
T ! ð0;0;0;1Þ. For a sequence of length N, the CNN uses a 
ðN;4Þ encoding, while the RF model utilizes a flattened 1D vec-
tor of length 4N. For BERT-based models, they integrate posi-
tional encoding and embeddings within the attention 
mechanism, enabling them to discern context and dependencies 
across extended segments of the sequence.

Hyperparameter tuning. RF, CNN, and BERT-based archi-
tectures adapted for DNA sequences were utilized, with 
hyperparameter tuning applied exclusively to RF and CNN 
models. Conversely, as LLMs are pre-trained on extensive 
datasets, BERT-based models exhibit robust performance 
without the need for substantial hyperparameter adjustments. 
The dataset is initially divided into 80% for training and 
20% for validation. During hyperparameter tuning, the train-
ing set (80% of the data) is further divided into k-folds, with 

Figure 1. General overview of the framework for this study. Data pre-processing stage includes species selection, promoters extraction from PPD, and 
CDS retrieved from NCBI to build negative datasets. Training pipeline comprises tuning hyperparameters for CNN and RF, and training stages for 
pretrained (DNABERT, DNABERT-2, Nucleotide Transformer) and tuned models (CNN, RF).

Figure 2. Dataset pre-processing workflow. Promoters sequences were extracted from PPD. Non-promoter sequences were extracted from CDS 
(NCBI), or synthetically generated (SRS), followed by a filtration step removing redundant sequences. A final merging stage is performed for 
each species.
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each fold split into 80% for training and 20% for validation 
within the tuning process. Detailed hyperparameter tuning 
procedures and model configurations for RF and CNN are 
provided in Supplementary Note S2.

Training. In the training stage, RF and CNN models were 
trained using the best hyperparameters identified during the 
hyperparameter tuning. The validation set, reserved from the 
initial 80/20 split of the dataset, was used for evaluating all 
models, including the RF, CNN, and BERT-based architec-
tures. Detailed training aspects are provided in Supplementary 
Note S3.

Performance evaluation. For classification model evaluation, 
key metrics were used to measure performance. Metrics evalu-
ated include specificity (Sp), sensitivity (Sn), precision (Pre), 
accuracy (Acc), Matthews correlation coefficient (MCC), F1 
score (F1), and the area under the ROC curve (ROC AUC).

3 Results
3.1 Bacterial species selection for multiple- 
species models
Due to the high diversity within bacteria, to improve the pro-
moter prediction performance, we selected a single phylum to 
focus on in this study. Previous studies have not taken into 
account taxonomic information to select evolutionary relat-
edness between species. Pseudomonadota harbored the great-
est amount of data (80 448 promoter sequences) and species 
(10), with each species belonging to a different genus, im-
proving the diversity of the dataset in comparison to other 
phyla (Supplementary Table S1).

3.2 Characterization of promoter and non-promoter 
datasets based on GC-content
After filtering redundant sequences, 65 647 promoters were 
available for dataset construction (Supplementary Table S2). 
Regarding non-promoters (SRS and CDS), in all the species 
included, the number of sequences exceeded the positive 
dataset, enabling the creation of balanced datasets per spe-
cies. Mean GC-content and GC-content distribution of the 
positive and negative datasets were analyzed per species 
according to their origin (Fig. 3 and Supplementary Table 
S3). GC-content distributions of promoter sequences showed 
differences between species, observing the lowest distribution 
for Acinetobacter baumannii (mean GC-content: 32.90%), 
and the highest for Burkholderia cenocepacia (mean GC- 
content: 61.41%). Overall, promoter sequences showed a 
negative skew in GC-content distribution, indicating the ma-
jority of the dataset is composed of a higher GC-content 
(mean GC-content: 56.05%). In the case of the CDS negative 
dataset, GC-content distribution between the positive and 
negative datasets varies in a species-dependent manner. For 
example, in the species Klebsiella aerogenes and 
Agrobacterium tumefaciens, the distributions differ greatly 
(Fig. 3; ΔGC-content: 11.04% and 10.77%, respectively), 
whereas Pseudomonas putida showed closer similarity 
(Fig. 3; ΔGC-content: 3.03%). Overall, CDS non-promoter 
sequences showed a more pronounced negative skew in GC- 
content distribution than promoters, with a 5.19% higher 
mean GC-content than the positive dataset (Supplementary 
Table S3). Conversely, in the SRS negative dataset, promoter 
and non-promoter sequences share a similar GC-content dis-
tribution and mean in all the species (Fig. 3; ΔGC-content <

2.0%). This behavior was also observed in the validation sub-
set used for model performance (Supplementary Fig. S1).

3.3 Comparative performance evaluation of models 
trained on SRS or CDS datasets
A performance comparison of the models for each negative 
dataset studied (CDS and SRS) was evaluated in terms of spe-
cificity (Sp), sensitivity (Sn), recall (Pre), accuracy (Acc), 
MCC, F1 Score, and overall ROC AUC (Table 1). 
DNABERT and Nucleotide Transformer exhibited superior 
performance in both negative datasets, demonstrating a 
higher learning capacity in both scenarios. Within BERT- 
based models, DNABERT-2 is outperformed by DNABERT 
and Nucleotide Transformer.

For models trained with the CDS dataset, DNABERT per-
formed best across most metrics. All CDS-trained models ex-
hibit relatively high Sp compared to Sn, indicating a gap that 
favors the accurate classification of non-promoters. The im-
balance seen in every model may suggest that the issue is 
mainly associated with the input data, pointing to potential 
improvements in the dataset construction as a crucial step. 
For ML-based models trained with the SRS dataset, the val-
ues across all metrics significantly increase by 15–20 points 
compared to the CDS dataset, with DNABERT and 
Nucleotide Transformer outperforming all other models. The 
difference between the two models in Sp, Sn, and recall 
remains consistent at 1–2 points, highlighting their perfor-
mance across different datasets. Regarding Sn and Sp, the 
predictors exhibit a more balanced performance, with a less 
pronounced gap between these metrics than models trained 

Figure 3. GC-content distribution of promoter and non-promoter 
sequences in the dataset.
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with the CDS dataset. ML-models using SRS as a negative 
dataset identify promoters and non-promoters with similar 
performance (Table 1).

3.4 GC-content of the negative dataset affects 
specificity–sensibility in a species- 
dependent manner
ML models trained with the CDS dataset have a detection 
preference for non-promoter than promoter sequences. Due 
to the multiple-species character of these models, we evalu-
ated which species could be more susceptible by the learned 
preference in the overall best model. From the five models 
tested, the DNABERT predictor was chosen the best model 
across four out of seven metrics (Table 1). Even though the 
overall metrics for DNABERT-based model using CDS 
showed a higher Sp (0.8665) than Sn (0.7660), that pattern is 
not observed in every species (Supplementary Table S4). For 
example, A. baumannii showed the highest Sn (0.9685) and 
lowest Sp (0.7512), suggesting that the model is preferably 
classifying promoter than non-promoter sequences in A. bau-
mannii. Interestingly, A. baumannii have the lowest GC- 
content for promoter and non-promoter sequences of the 
dataset, suggesting that sequences rich in AT are easy to clas-
sify as promoters and hard to identify as non-promoter than 
the rest of the dataset (Fig. 3). This behavior also can be ob-
served for K. aerogenes, with a low GC-content in the pro-
moter dataset. Coinciding with this finding, sequences of 
other species rich in GC, such as B. cenocepacia and 
Xanthomonas campestris, showed a high Sp (>0.914), a bet-
ter classification of non-promoters. Other species present 
subtle differences of about 0.01 up to more significant dispar-
ities of around 0.22, further emphasizing the heterogeneity in 
detection capabilities across different organisms in multiple- 
species predictors. Moreover, species such as E. coli, 
Sinorhizobium meliloti, and P. putida notably diminish the 
dataset Sn, each showing values <0.685, and 
Bradyrhizobium japonicum with a Sn of 0.774. For the latter 
species, only P. putida, S. meliloti, and B. japonicum possess 
GC-rich sequences in the positive training data, whereas E. 
coli does not follow a trend explained by GC-content. These 
results illustrate that GC-content could be in part responsible 
for bias in ML promoter classifiers for multiple-species, but 
other traits (e.g. tetranucleotide frequency or other sequence 
features) could also contribute to this bias.

3.5 Reduced sensitivity in the BERT-model trained 
with CDS dataset
As Cassiano and Silva-Rocha (2020) highlighted in E. coli 
predictors, some tools for promoter detection are bias toward 
rich AT-sequences. To further analyze the observations based 
on Sp and Sn and their relationship to GC-content of the 
DNABERT-based model trained with CDS, a latent space 
projection of the [CLS] output tokens was performed using 
Uniform Manifold Approximation and Projection (UMAP) 
(McInnes et al. 2018). UMAP reduces the dimensionality of 
the data, facilitating the visualization and analysis of complex 
high-dimensional data as part of the validation analysis. 
UMAP projections of promoter and non-promoter sequences 
(Fig. 4C and D) showed that the classification task possesses 
GC-content variations between the prediction clusters. The 
non-promoter cluster (TN þ FP; Fig. 4C), ranging predomi-
nantly from 60% to 80% GC-content, is more distinctly de-
fined compared to the promoter cluster (TP þ FN; Fig. 4D), 
which shows greater dispersion within the model projection 
and spans mainly from 40% to 60% GC-content. This over-
lap is visible in Fig. 4B, where many FN overlap with TN, 
highlighting challenges in category differentiation. Notably, 
many promoters, especially those with higher GC-content 
levels, are found within the non-promoter region of the 
model projection. Conversely, fewer non-promoters appear 
within the promoter cluster, indicating classification asymme-
try and dispersion that suggest difficulty distinguishing pro-
moter sequences. The prominence of higher GC-content 
among misclassified promoters within the non-promoter clus-
ter further evidences a bias, impacting classification accuracy. 
These findings are also found in other species such as B. ceno-
cepacia, E. coli, Shigella flexneri, S. meliloti, and P. putida 
(Supplementary Fig. S2). GC-content distribution across ac-
tual datasets and predictions presents a notable overlap be-
tween FN and TN with both categories showing considerable 
similarity in their interquartile ranges (Fig. 4A). TN have a 
GC-content range from �62% to 69%, centering around a 
median of 65%. FN shows a slightly narrower interquartile 
range from about 59% to 68%, with a median of 64%. This 
proximity in distribution suggests that the DNABERT-based 
model often misclassifies genuine promoter sequences as 
non-promoters when their GC-content falls within these 
overlapping ranges, suggesting a bias in the model ability to 
differentiate based on GC-content. Interestingly, FN tends to 
overlap with TN in other species as well (Supplementary 
Fig. S2). Distributions for TP and FP present less overlap and 
possess a distinct range, highlighting differences in the model 

Table 1. Overall performance metrics for ML-based models for promoter predictors in multiple-species using CDS and SRS as negative datasets. Bold 
values indicate the best-performing model for each dataset.

Dataset Model Sp Sn Pre Acc MCC F1 ROC AUC

CDS RF 0.7761 0.6440 0.7448 0.7096 0.4237 0.6907 0.7824
CNN 0.8574 0.7307 0.8387 0.7936 0.5925 0.7810 0.8678
DNABERT 0.8665 0.7660 0.8534 0.8159 0.6355 0.8074 0.8894
DNABERT-2 0.8763 0.6851 0.849 0.78 0.5715 0.7583 0.8517
Nucleotide Transformer 0.8885 0.7402 0.8707 0.8138 0.6353 0.8002 0.89

SRS RF 0.8099 0.9520 0.8356 0.8815 0.7704 0.89 0.9554
CNN 0.9374 0.9325 0.9379 0.9349 0.8698 0.9352 0.9853
DNABERT 0.9264 0.9666 0.9302 0.9466 0.894 0.948 0.9885
DNABERT-2 0.9125 0.9691 0.9182 0.941 0.8833 0.943 0.9867
Nucleotide Transformer 0.9439 0.9462 0.9448 0.945 0.8901 0.9455 0.9872

Negative dataset bias in promoter ML-based models                                                                                                                                                         5 
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sensitivity to other promoter intrinsic characteristics 
(Supplementary Fig. S2).

3.6 Synthetic non-promoter sequences improve 
bias reduction in promoter predictors
A notable improvement is observed for the SRS-trained 
model using DNABERT compared to the CDS-trained model; 
Sp and Sn gaps are smaller, with no more than a 0.05-point 
difference per species (Supplementary Table S5). This sug-
gests that SRS effectively leads to more balanced models in 
terms of promoter and non-promoter predictions. 
Furthermore, Sn generally exceeds Sp, indicating enhanced 
promoter identification. Dimensionality reduction enabled a 
detailed visualization of how SRS influences the model classi-
fication ability (Fig. 5). GC-content distribution across classi-
fications showed less variability in GC-content ranges than 
the CDS dataset (Fig. 5A). TN and FN display overlapping 
interquartile ranges from �53% to 62%, suggesting a nar-
rower distribution gap. Similarly, TP and FP have interquar-
tile ranges from 56% to 63%, indicating overlapping 
distributions without a clear bias in GC-content for any 
group. This pattern suggests a more uniform handling of GC- 
content across categories than the CDS dataset. Figure 5B 
showcases UMAP projections for the SRS dataset classified 
by predicted categories, whereas Fig. 5C and D represent the 
non-promoter and promoter clusters, respectively. While 
some FN and FP overlap within their respective clusters, there 
is no discernible pattern of GC-content significantly distin-
guishing the clusters. The absence of a clear GC-content 

pattern between the promoter and non-promoter prediction 
clusters suggests a reduction in the GC-content-related bias 
previously noted in the CDS dataset. These findings are con-
sistent across other species included (Supplementary Fig. S3). 
Although the SRS dataset contributes to more balanced and 
accurate classification outcomes in the validation data, this 
result should be taken carefully as a result of model overfit-
ting. To test this, we evaluated the behavior of the CDS- and 
SRS-trained models in real genomic data of the species with 
the best metrics, X. campestris. Genomic locus of ten pro-
moters from X. campestris, including 5000 nt upstream and 
downstream from the TSS, were analyzed by a sliding win-
dow with a stride of 1 nt to predict promoter and non- 
promoter regions depicted by average softmax probability 
(Supplementary Figs S4 and S5). We considered probability 
variation as a promoter detection signal. The CDS-trained 
model showed inconsistent behavior with sudden probability 
variations throughout the entire sequence, detecting most 
promoters with high false positives. The SRS-trained model 
exhibited a consistently high detection signal across the geno-
mic sequence (P¼1). However, the latter displayed some neg-
ative perturbations close to promoter regions suggesting an 
inverted classification model (1-P).

4 Discussion
For the proper development and improvement of ML-based 
tools in sequence analysis, more insight about the training 
datasets that we use to create predictive models must be 

Figure 4. Comparative analysis for B. japonicum classifications in the DNABERT-based model trained with the CDS dataset. (A) Boxplots of GC-content 
distribution for positive and negative datasets along with predicted categories (TP, TN, FP, FN). (B) UMAP projections of the [CLS] token from DNABERT, 
based on validation data. (C, D) UMAP projections for non-promoters (TNþFP) and promoters (TPþFN) ground truth, respectively, each augmented by 
density heatmaps of GC-content.

Figure 5. Comparative analysis for B. japonicum classifications in the DNABERT-based model trained with the SRS dataset. (A) Boxplots of GC-content 
distribution for positive and negative datasets along with predicted categories (TP, TN, FP, FN). (B) UMAP projections of the [CLS] token from DNABERT, 
based on validation data. (C, D) UMAP projections for non-promoters (TNþFP) and promoters (TPþFN) ground truth, respectively, each augmented by 
density heatmaps of GC-content.
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addressed. Due to our narrow knowledge of promoter 
sequences in multiple bacterial species, with only a few 
strains with enough data, it is challenging to be aware of 
which factors may create bias. Bias is not uncommon in ML- 
based tools, with several stages being able to cause unfairness 
in the task pursued. This includes: dataset selection, hyper-
parameters optimization, algorithms, or model architecture 
chosen (Bischl et al. 2023). Here, we focus on dataset cura-
tion, particularly data-driven biases caused by the nega-
tive dataset.

GC-content variation is intrinsic to any genomic sequence, 
which highlights the hindrance to create a proper negative 
dataset for any ML-based tool for single or multiple species. 
Bacterial GC-content ranges from 16% to 77%, with 90% of 
organisms between 33% and 71% (Aliperti et al. 2023). GC- 
content standardization for negative datasets has been taken 
into consideration in a few models, e.g. in the assessment of 
methods to identify cis-regulatory motifs (Zhang et al. 2021). 
Nonetheless, correction of negative datasets by GC-content 
has not been investigated in predictors outcomes. Multiple- 
species predictors are inherently variable in model perfor-
mance across species depending on the negative dataset cho-
sen, with GC-content as one factor to consider. For CDS- 
trained models, the observed gaps in Sp and Sn (>20 points) 
highlighted the need for further refinement. Performance 
evaluation in independent datasets of multiple-species predic-
tors (TIMER, Promotech, iPro-WAEL, iPro70-FMWin) also 
showed this problem, with large Sn and Sp gaps per species 
evaluated (Zhu et al. 2023). Here, the SRS dataset outper-
formed the CDS-trained models, in particular improving the 
gaps between Sn and Sp. Even though the usage of synthetic 
datasets could cause model overfitting, the applicability and 
reliability of these models in real data need to be tested to en-
sure the generation of models with real-world applications. 
In this study, both models showed average behavior in real 
genomic data, stressing the need to validate these models in 
genomic sequences.

In recent years, many BERT-based tools have improved pre-
dictor performance in sequence analysis compared to other 
ML or deep-learning techniques in Eukarya and Bacteria. 
DNABERT-Prom, BERT-Promoter, msBERT-Promoter are 
examples of these models using the Attention mechanism, 
generally outperforming previous models based on CNN or 
less complex architectures (Ji et al. 2021, Le et al. 2022, Li 
et al. 2024). In this study, DNABERT was the overall best 
model in both datasets. For SRS, DNABERT remained the 
best model; however, the GC-content normalization enabled 
less complex architectures such as CNN and RF models to be-
come competitive in performance metrics with BERT-based 
models despite their lower computational complexity. 
Although large computational resources are required for NLP 
models like BERT-based models, this underscores the rele-
vance of CNN and RF models for multi-species promoter pre-
diction in GC-content matched sequences.
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