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Abstract

The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their
fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative
stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other
Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation,
(ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation
to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in
cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we
include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of
stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies
of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the
selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and

bioremediation strategies.
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Introduction

Strains of the genus Paraburkholderia are part of the Burkholde-
ria sensu lato multigenus complex. Species of Burkholderia sensu
lato are now classified within seven distinct genera, all of which
were previously described under the Burkholderia genus (Sawana
et al. 2014, Dobritsa and Samadpour 2019). Paraburkholderia genus
mainly comprises environmental strains associated with plants,
soil, fungi, and aquatic niches (Sawana et al. 2014). In contrast, the
Burkholderia sensu stricto genus includes mostly clinical and phy-
topathogenic strains. Caballeronia, Trinickia, Mycetohabitans, Robb-
sia, and Pararobbsia genera were reclassified from the Burkholderia
and Paraburkholderia genera. Strains belonging to Paraburkholderia
generally possess large genomes (>7 Mbp), are metabolically ver-
satile, and are capable of adapting to diverse adverse conditions
(Chain et al. 2006, Pérez-Pantoja et al. 2012, Herpell et al. 2021,
Rodriguez-Castro et al. 2024). Bacteria from the Burkholderiales
order have an impressive catabolic potential revealed by the pres-
ence of a high number of aromatic degradative pathways encoded
in their genomes (Pérez-Pantoja et al. 2012). These features are
useful for the application of efficient bioremediation strategies.
Paraburkholderia xenovorans strains are mainly present in
soil and the rhizosphere of grass plants (Chain et al. 2006).

Paraburkholderia xenovorans LB400, a Burkholderiales species, is a
model aromatic-degrading bacterium that degrades an unusu-
ally wide range of persistent organic pollutants (POPs), including
aromatic compounds and polychlorobiphenyls (PCBs) (Seeger et
al. 1999, 2001, 2003, Chain et al. 2006). Recently, it has been re-
ported that P. xenovorans LB400 is also a plant growth-promoting
bacterium (Vega-Celedén et al. 2024). Paraburkholderia xenovorans
possesses over 30 catabolic pathways for the degradation of aro-
matic compounds, including 11 central and more than 20 periph-
eral pathways—one of the highest numbers reported among bac-
teria. P. xenovorans LB400 genome (9.73 Mbp) was sequenced and
characterized by Chain et al. (2006) with two chromosomes (C1
and C2) and a megaplasmid, revealing high genomic plasticity
and redundancy. According to evolutionary analyses, >20% of P.
xenovorans genes were recently acquired by horizontal gene trans-
fer, reflecting a niche-specialized genomic composition within the
genus (Chain et al. 2006). Therefore, it is no surprise that this
strain, isolated from a PCB-polluted landfill in New York state,
hosts a wide repertoire of genes for metabolizing aromatic com-
pounds and PCBs, and carries diverse stress response genes. Its
genome encodes key enzymes involved in the degradation of aro-
matic compounds, such as monooxygenases, dioxygenases, and
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hydroxylases (Chain et al. 2006, Méndez et al. 2011, Chirino et al.
2013, Rodriguez-Castro et al. 2024). Functional redundancy of the
P. xenovorans LB400 genome has been experimentally observed in
the catabolism of aromatic compounds, such as the benzoate and
hydroxyphenylacetate pathways (Denef et al. 2006, Méndez et al.
2011).

Bacterial strains from the Burkholderiales and Pseudomon-
adales orders have been models for the study of aromatic degra-
dation (Olivera et al. 1998, Dinkla et al. 2001, Jiménez et al. 2002,
Segura et al. 2005, Chain et al. 2006, de Lorenzo et al. 2024,
Rodriguez-Castro et al. 2024). An initial activation is required to
metabolize aromatic substrates, which often involves redox mod-
ifications, such as monooxygenation or dioxygenation, performed
by Rieske nonheme iron oxygenases (Gibson and Parales 2000).
Degradation intermediates of most aromatic compounds eventu-
ally funnel into the $3-ketoadipate pathway and ultimately, to the
central carbon metabolism for energy production (Gibson and Par-
ales 2000). However, the mechanism of action of oxygenases leads
to the formation of reactive oxygen species (ROS), which increases
when aromatic substrates do not fit properly in the active center
of these enzymes (Imbeault et al. 2000, Patrauchan et al. 2008).
Upregulation of general and oxidative stress proteins has been re-
ported in Paraburkholderia, Pseudomonas, Acinetobacter, and Bacillus
strains during aerobic aromatic catabolism or upon exposure to
aromatic compounds (Tam et al. 2006, Agullé et al. 2007, Martinez
et al. 2007, Pieper and Seeger 2008, 2017, Lin 2017, Méndez et al.
2022a, Rodriguez-Castro et al. 2024).

Exposure to environmental stress, such as aromatic com-
pounds that are widely distributed in the environment, causes
detriment in bacterial fitness. In addition, other sources of stress
are present in polluted ecosystems, such as scarcity of nutri-
ents and soil salinity that has been intensified by climate change
(Atal et al. 2023). However, there is a significant gap in the cur-
rent knowledge about stress responses in bacteria, especially
strains from the Burkholderiales order, during biodegradation
and other abiotic factors. Stress responses in members of the
Burkholderiales order—relevant in biodegradation, agriculture,
and pathogenesis—have received comparatively less attention in
the context of biodegradation, leaving a significant gap in under-
standing their adaptations to the stress associated with the degra-
dation of aromatic compounds and to abiotic stressors. Moreover,
the interplay between biodegradation and diverse bacterial stress
response mechanisms remains largely unexplored.

This review summarizes relevant hints on physiological re-
sponses of P. xenovorans, other Burkholderiales, and relevant de-
grading bacteria to toxic compounds such as aromatic molecules
and PCBs, and adaptive mechanisms to counteract oxidative
stress, nutrient scarcity, and high salinity conditions. In addition,
novel genomic insights in P. xenovorans and other model bacte-
ria focused on proteostasis network, reducing power regeneration
pathways, and synthesis of osmoprotectants will be presented to
further understand adaptation mechanisms upon stress, which
are crucial to improving bioremediation processes.

Aromatic-degrading bacteria, especially Burkholderiales, ex-
hibit complex proteostasis mechanisms that allow them to adapt
to harsh environmental conditions, such as oxidative stress
caused by redox imbalances. Exposure to aromatic compounds
and toxic intermediates induces oxidative stress, triggering a cas-
cade of metabolic adaptations to redirect energy production to-
ward stress responses. These adaptations often include shifts in
amino acid metabolism, protein turnover, and protein synthesis,
ensuring the maintenance of cellular homeostasis. Additionally,
bacterial membranes play a crucial role in the uptake and trans-

port of aromatic compounds, serving as a first line of defense
against their toxic effects. Together, these strategies enable bacte-
ria to support their survival, fitness, and functionality while me-
tabolizing toxic aromatic compounds.

Stress response during aromatic
degradation

In nature, microorganisms are exposed to environmental stress
factors that activate specific stress responses. The presence
in the environment of numerous aromatic compounds derived
from petroleum and lignin components, plant exudates, aro-
matic amino acids, and xenobiotics contributes to the high di-
versity of ecological niches. Thus, xenobiotics are not the only
aromatic compounds microorganisms encounter in the environ-
ment they inhabit. The presence of diverse aromatic compounds,
such as benzoate, hydroxyphenylacetates, phenol, toluene, and
(chloro)biphenyls, triggers a stress response in degrading bacte-
ria (Lambert et al. 1997, Dominguez-Cuevas et al. 2006, Agullé et
al. 2007, Ma et al. 2020, Rodriguez-Castro et al. 2024). Diverse aro-
matic compounds and their metabolic intermediates are highly
toxic to cells (Sikkema et al. 1995, Blasco et al. 1997, Camara et al.
2004, Chirino et al. 2013, Agullé et al. 2017). During aerobic bac-
terial aromatic degradation, an increase in ROS may cause sig-
nificant protein damage, which can lead to protein unfolding and
aggregation, resulting in the induction of molecular chaperones
as protection strategies.

The analysis of 80 Burkholderiales genomes published by
Pérez-Pantoja et al. (2012) revealed significant catabolic poten-
tial, highlighting the presence of central ring-cleavage pathways
and peripheral pathways associated with the biodegradation of
a wide range of aromatic compounds. The most common path-
ways identified include the protocatechuate, catechol, homogen-
tisate, and phenylacetyl-CoA ring-cleavage pathways, present in
at least 60% of the genomes analyzed. The metabolically versatile
strain Burkholderia sp. K24 degrades monocyclic aromatic hydro-
carbons, including aniline, benzene, toluene, and xylene (Lee et
al. 2016). Proteomic analyses in Burkholderia sp. K24 showed the
upregulation of GroEL and GroES, the universal stress protein A
(UspA), and a DNA-binding protein as part of the adaptive stress
response (Lee et al. 2016). Adaptation mechanisms of a Burkholde-
ria sp. strain during phenol degradation involve the upregulation
of genes encoding Hsps, cold-shock proteins (Csp), DNA repair pro-
teins, antioxidant proteins, and proteins related to the Krebs cy-
cle and oxidative phosphorylation (Ma et al. 2020). Burkholderia sp.
was able to grow after prolonged exposure to high phenol con-
centrations (1500 mg/l), indicating a significant level of tolerance
to phenol due to stress adaptation mechanisms, which is crucial
for its survival in polluted environments. The upregulation of a
universal stress protein (Usp) and two genes encoding for alkyl
hydroperoxide reductase subunits C and D was observed during
methyl parathion degradation by B. cenocepacia CEIB S5-2 (Ortiz-
Hernéndez et al. 2021).

The study of the genome- and proteome-wide defenses against
aromatic compounds toxicity in P. xenovorans strain LB400 shows
the induction of the molecular chaperones and stress pro-
teins, indicating that exposure to diverse aromatic compounds
is stressful for the cells. The molecular chaperones DnaK and
GroEL are induced during chlorobiphenyl and p-cymene degra-
dation (Agullé et al. 2007, 2017), whereas DnaK and HtpG are
induced by dead-end metabolites of the biphenyl upper path-
way of 4-chlorobiphenyl (Martinez et al. 2007). Moreover, expo-
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sure to (chloro)biphenyls (biphenyl, 4-chlorobiphenyl), chloroben-
zoates (2-chlorobenzoate, 4-chlorobenzoate), and p-cymene by
P. xenovorans increases the expression of molecular chaperones
GroEL, DnaK, HtpG, and ClpB (Martinez et al. 2007, Agull6 et
al. 2017). Proteomic studies showed the induction of the GroEL,
GroES, and DnaK chaperones during growth of P. xenovorans
in 3-hydroxyphenylacetate and 4-hydroxyphenylacetate (Méndez
2017, Rodriguez-Castro et al. 2024). The chaperones DnakK, Dnaj,
Hsp33, HtpG, and ClpB were upregulated in P. xenovorans cells
grown on benzoate (Denef et al. 2006). Overall, these results sug-
gest that the induction of molecular chaperones contributes to
stabilizing proteins affected by these aromatic compounds. The
presence of aromatic compounds in the cell membrane and the
cytoplasm may destabilize the three-dimensional structure of
proteins (Segura et al. 2005). ClpB and DnaK play a key role in res-
cuing damaged proteins from large aggregates in a process depen-
dent on adenosine triphosphate (ATP) (Lee et al. 2003). DnaK and
HtpG prevent aggregation and refold misfolded and aggregated
intracellular proteins under stress conditions (Castanié-Cornet et
al. 2014, Wickner et al. 2021). The activity of HtpG increases under
oxidative and thermal stress (Wickner et al. 2021). The complex
formed by GroEL-GroES chaperones binds to peptides during syn-
thesis on ribosomes, leading to the correct folding of the active
site subunits (Goemans et al. 2018).

Relevant studies have reported specific stress responses dur-
ing aromatic degradation in strains outside the Burkholderiales
order. Stress response of Pseudomonas putida DOT-T1E in the pres-
ence of toluene includes the induction of GroES, CspA (Segura et
al. 2005). Induction of GroEL, GroES, DnakK, DnaJ, GrpE, Lon pro-
tease, and other proteins is part of the adaptive response of P.
putida KT2440 to toluene and o-xylene (Dominguez-Cuevas et al.
2006). The chaperones Dnak, GrpE, and Clp are induced in R. jostii
RHAT1 in the presence of aromatic compounds (Patrauchan et al.
2008, Costa et al. 2017). The induction of these chaperones reflects
the presence of misfolding and aggregated proteins during expo-
sure to aromatic compounds.

Oxidative stress response to aromatic
compounds

Oxidative stress is triggered when ROS exceeds antioxidant mech-
anisms within the cell (Imlay 2008; 2013). Superoxide, H,O», and
hydroxyl radicals are the most common oxidizing compounds
produced when molecular oxygen gains single electrons (Imlay
2008). ROS can be in the environment as disinfectants and an-
timicrobials or may be produced by bacterial metabolism, and are
toxic due to their ability to interact with macromolecules, caus-
ing protein carbonylation, lipid peroxidation, and DNA mutation
(Arenas et al. 2011; Imlay 2013).

ROS are generated during the aerobic metabolism of aromatic
compounds in bacteria (Di Gennaro et al. 2011, Ponce et al. 2011,
Agull6 et al. 2017, Méndez 2017, Akkaya et al. 2018, Rodriguez-
Castro et al. 2024), which leads to an oxidative stress response
(Méndez et al. 2022a, Rodriguez-Castro et al. 2024). The oxida-
tive stress response includes the induction of antioxidant proteins
to restore redox homeostasis in the cell. The alkyl hydroperox-
ide reductase AhpC subunit is induced upon degradation of di-
verse aromatic substrates such as biphenyl, chlorobiphenyls, p-
cymene, and 4-hydroxyphenylacetate in P. xenovorans (Agullé et al.
2007, Ponce et al. 2011, 2017, Méndez 2017, Rodriguez-Castro et al.
2024). Alkyl hydroperoxide reductase (AhpCF or AhpCD) detoxifies
peroxides at low concentrations. Exposure of P. xenovorans cells to
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p-cymene showed the induction of the organic hydroperoxide re-
sistance Ohr protein and the aconitase AcnA, whose role is to re-
place the function of aconitase AcnB under conditions of oxidative
stress (Agullé et al. 2017). Exposure to 4-hydroxyphenylacetate in-
creases ROS formation in P. xenovorans. However, a protective role
of the P. xenovorans long-chain flavodoxin FIdX1 has been observed
during growth on aromatic compounds. Overexpression of F1dX1
improves the performance of P. xenovorans by enhancing its growth
on 4-hydroxyphenylacetate and degradation rates compared to
the control strain (Rodriguez-Castro et al. 2024). Moreover, the
downregulation of several enzymes involved in oxidative stress
response was observed, such as Ohr, DpsA, KatE and SodB, GstA,
and TrxB, suggesting that the flavodoxin FldX1 protects against
oxidative stress (Rodriguez-Castro et al. 2024). In addition, an
increased 4-hydroxyphenylacetate degradation was observed in
soil microcosms by P. xenovorans overexpressing F1dX1 (Rodriguez-
Castro et al. 2024). These results suggest a key role of the long-
chain flavodoxin F1dX1 in improving tolerance to oxidative stress
triggered by these oxidizing agents and aromatic compounds
(Fig. 1).

Proteome studies in P. xenovorans strain LB400 revealed the up-
regulation of oxidative stress response proteins during growth on
phenylacetate. Two peroxidases (BxeA3905 and BxeA0528) and an
uncharacterized stress-induced protein (BxeA0904) were signifi-
cantly more abundant in the phenylacetate proteome compared
to succinate-grown cells (Patrauchan et al. 2011). Interestingly,
growth on phenylacetate, benzoate, and biphenyl induced a simi-
lar set of stress response proteins and genes involved in fatty acid
metabolism (Denef et al. 2006, Patrauchan et al. 2011). Microar-
ray experiments revealed the upregulation of seven catalases and
the oxyR regulatory gene during growth on biphenyl (Denef et al.
2006). These results indicate a strong oxidative stress response in
P. xenovorans grown on aromatic compounds.

Oxidative stress response has been observed in other aromatic-
degrading bacteria. Proteomic studies on the Pseudomonadales
strain Acinetobacter calcoaceticus during the degradation of catechol
revealed a higher expression of the oxidative stress proteins AhpC
and AhpF, and significantly higher catalase activity (Benndorf et
al. 2001). Acinetobacter calcoaceticus grown on crude oil increases
superoxide dismutase (SOD) levels (Sazykin et al. 2019).

The stress response has also been studied in model aromatic-
degrading strains of the Rhodococcus genus. An antioxidant re-
sponse was described in R. jostii RHA1, a potent PCB-degrader,
showing the upregulation in presence of biphenyl, ethylbenzene,
or benzene of catalase, AhpC, Hsp100 proteins, ATP-dependent
Clp protease, and fatty acid desaturase (Gongalves et al. 2006,
Patrauchan et al. 2008). Proteomic studies evaluating oxidative
stress in R. jostii RHA1 identified a broad range of upregulated
proteins in the presence of the aromatic compound paraquat, in-
cluding AhpC, AhpF, catalase, chaperones DnaK and GrpE, glutare-
doxin, and glutathione peroxidase, suggesting a robust stress re-
sponse (Costa et al. 2017).

An upregulation of genes involved in oxidative stress re-
sponse was observed in Rhodococcus aetherivorans 124 in the pres-
ence of PCBs (Puglisi et al. 2010). These include the groEL, ahpC,
sodA (SOD), katG (catalase/peroxidase), and trxB (thioredoxin re-
ductase) genes. Upregulated catabolic genes include those en-
coding the ring-hydroxylating dioxygenase BhpC, catechol 2,3-
dioxygenase, carveol dehydrogenase, phenol hydrolase, and trans-
porter genes. However, the genes bphAaAbAcAd of the biphenyl
pathway were not upregulated. Rhodococcus erythropolis in presence
of cyclohexane, naphthalene, and diesel increases the expression
of genes encoding the cytochrome P450 and the Fe/Mn SODs, in-
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dicating an oxidative stress response to hydrocarbons (Sazykin et
al. 2019).

Oxidative stress response is regulated by OxyR
and SoxR

The oxidative stress response in bacteria is primarily controlled
by the transcriptional regulators OxyR and SoxR, which can sense
ROS and trigger a specific response. The OxyR and SoxR mecha-
nisms have been well-studied in Escherichia coli. Inside the cells, the
presence of H,0, is sensed by OxyR. OxyR belongs to the family
of LysR regulators and acts as a transcriptional activator of oxida-
tive stress genes. In the presence of H,0,, E. coli OxyR binds as a
tetramer near the -35 region of at least 20 oxidative stress genes,
activating them at the transcriptional level. Some of these include
the genes dpsA (DNA and iron-binding protein), gorA (GSH reduc-
tase), grxA (glutaredoxin), katG, and ahpCF (Imlay 2008). These en-
zymes are essential for the survival of bacteria under oxidative
stress. Previous studies have shown the presence of a remark-
able number of stress-related genes in the genome of P. xenovorans
LB400, revealing a robust set of genes for oxidative stress response
(Méndez 2017, Méndez et al. 2022a). OxyR regulon-related genes
identified in P. xenovorans include ahpC (alkyl hydroperoxide reduc-
tase subunit C; two copies), ahpF (alkyl hydroperoxide reductase
subunit F; nine copies), kat (catalase; six copies), gorA (glutathione
peroxidase; one copy), dpsA (one copy), trxB (thioredoxin reduc-

tase; one copy), and fur (ferric uptake regulator; one copy) (Mén-
dez 2017, Méndez et al. 2022a). Other stress-related genes in P. xen-
ovorans include fumC (fumarate hydratase; one copy), acn (aconi-
tate hydratase; three copies), sodB (Cu-Zn and Mn-Fe SODs; four
copies), fpr (NADP-dependent ferredoxin reductase; one copy), and
fldX (flavodoxin X; two copies) (Méndez 2017, Méndez et al. 2022a).
These genes are regulated by SoxRS in E. coli, which are activated
by superoxide (Imlay 2008).

SODs are enzymes that catalyze the conversion of superoxide
into H,O,, while catalases and peroxidases are present in the cy-
toplasm and generate H,O and O, from H,0,. SODs are consid-
ered the first defense involved in superoxide detoxification (Imlay
2008). In E. coli, SodC (Cu) is in the periplasm, whereas SodA (Mn)
and SodB (Fe) are cytoplasmic or cytoplasmic/membrane-bound
enzymes. The SoxRS regulon in E. coli activates the transcription
of sodA (Mn SOD), zwf (glucose-6-phosphate dehydrogenase), fldA
and fldB (flavodoxins A and B), fur (ferric uptake regulator), nfo
(DNA repair), micF (small RNA that negatively regulates the ex-
pression of porin F), and other genes in response to superoxide-
generating compounds, such as the herbicide paraquat (Pom-
posiello and Demple 2001, Imlay 2008). However, these mod-
els differ from those described in nonenterobacteria. The soxS
gene, a DNA-binding transcriptional regulator in E. coli, is absent
in nonenterobacteria, suggesting alternative regulation roles of
the SoxR regulon. For example, in the nonenterobacterium Pseu-
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domonas aeruginosa PAO1, which also has a wide repertoire of ox-
idative stress response genes activated by OxyR, this is activated
in the presence of H,O, and paraquat (Ochsner et al. 2000). In P.
aeruginosa PAO1, SoxR activates monooxygenase and transporter
genes that may be involved in synthesizing phenazines (Dietrich
etal. 2008). In P. xenovorans, the OxyR transcriptional regulator has
a key protective role against H,O, and paraquat (Méndez et al.
2022a). Unlike the separate OxyR- and SoxRS-mediated responses
triggered by H,0, and superoxide in E. coli, respectively, this study
reveals a broad stress response in P. xenovorans that is primarily
regulated by OxyR. Recent studies in P. xenovorans revealed rel-
evant hints on its response to oxidizing compounds at the pro-
teome and transcriptional levels. Growth, susceptibility, and ROS
formation assays in P. xenovorans cells reveal a higher sensitivity
to paraquat than H,0,. The herbicide paraquat is a widely stud-
led oxidizing agent due to the redox cycling reactions that pro-
duce ROS (Méndez et al. 2022a). Transcriptional analyses showed
in P. xenovorans cells, upon exposure to H,O, the upregulation
of the oxyR, ahpC1, katE, and ohrB genes. In addition, the oxyR,
fumC, ahpC1, sodB1, and ohrB genes were induced in the presence
of paraquat (Méndez et al. 2022a). Proteome analysis revealed that
the herbicide paraquat induces oxidative stress response proteins,
such as AhpCF, DpsA, the universal stress protein UspA, and the
RNA chaperone CspA. Paraquat and H,0, induced the Ohr pro-
tein, which is involved in organic peroxide resistance. Notably, the
overexpression of the oxyR gene in P. xenovorans significantly de-
creased ROS formation and the susceptibility to paraquat, sug-
gesting a broad antioxidant response regulated by OxyR (Méndez
et al. 2022a) (Fig. 1).

Induction of the electron shuttle flavodoxin is another com-
mon feature of the antioxidant response for cell redox balance.
Flavodoxins are small electron transfer flavoproteins, highly iso-
functional with ferredoxins, expressed under oxidative stress and
iron limitation (Sancho 2006, Gonzélez and Fillat 2018). Remark-
ably, overexpression of the long-chain flavodoxin IsiB from the
cyanobacterium Anabaena sp. PCC7119 in tobacco plants confers
resistance to the redox-cycling herbicide paraquat and enhances
the biodegradation of 2,4-dinitrotoluene (Tognetti et al. 2007). In
addition, overexpression of the flavodoxin FIdP protects P. aerug-
inosa from oxidative stress, decreasing H,O,-induced cell death
and DNA hypermutability (Moyano et al. 2014). Similarly, previous
reports showed that overexpression of the P. xenovorans long-chain
flavodoxin F1dX1 exerts a protective role against stress induced by
paraquat and H,O, (Rodriguez-Castro et al. 2019) The strain over-
expressing F1dX1 showed a notable increase in survival (>70%)
after exposure to the herbicide paraquat, suggesting that F1dX1
may enhance tolerance to paraquat but not to H,O, under specific
conditions. F1dX1 recombinant cells show lower lipid peroxidation
after exposure to paraquat and reduced protein carbonylation af-
ter H,O, exposure, compared to the control strain. A downregu-
lation of several oxidative stress-related genes is observed (katG,
hpf, trxB1, and ohr) after exposure to paraquat, suggesting a spe-
cific regulatory response to oxidative stress (Rodriguez-Castro et
al. 2019) (Fig. 1).

Effects of toxic metabolites

Production of unstable intermediates during dioxygenation reac-
tions in aromatic catabolism can also increase oxidative stress,
leading to cellular damage (Nojiri et al. 2001). In P. xenovorans, for-
mation of toxic metabolic intermediates during aromatic degra-
dation pathways has been reported. For example, the antibi-
otic picolinic acid is produced during 2-aminophenol degrada-
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tion, which has an inhibitory effect on P. xenovorans growth
(Chirino et al. 2013). The well-known antibiotic picolinic acid may
be produced by a spontaneous nonenzymatic reaction from 2-
aminomuconate-6-semialdehyde, which is the reaction product
of the 2-aminophenol-1,6-dioxygenase (Chirino et al. 2013).

PCB degradation by P. xenovorans and other bacteria is often in-
complete, with a concomitant accumulation of metabolic inter-
mediates. Specific PCB congeners and chlorobenzoates, which ac-
cumulate during PCB degradation, significantly reduce the viabil-
ity of bacterial cells (Camara et al. 2004). 4-Chlorobenzoate and 2-
chlorobenzoate inhibit P. xenovorans growth on glucose. Moreover,
P. xenovorans-exposed cells to 4-chlorobenzoate show an increased
number and size of electron-dense granules in the cytoplasm,
which may be polyphosphates (Martinez et al. 2007) that have
been linked to stress protection mechanisms, serving as scaffolds
to stabilize protein structure (Gray et al. 2014). Polyphosphates are
stress-resistant nonproteinaceous chaperones that bind to solu-
ble unfolded proteins, maintaining them in a folding-competent
conformation (Reichmann et al. 2018). (Chloro)biphenyls differ
in their toxicity compared with the biotransformation prod-
ucts. (Chloro)dihydrodiols and (chloro)dihydroxybiphenyls are
highly toxic metabolites, affecting cell viability significantly more
than (chloro)biphenyls. Partial degradation of PCBs by the en-
zymes BphA and BphB produces toxic metabolic intermediates.
(Chloro)2,3-dihydroxybiphenyl drastically decreases the cell via-
bility of P. xenovorans (Seeger et al. 1995, 1999, Seah et al. 2000,
Camara et al. 2004). Figure 2 shows the formation of the toxic
metabolites (chloro)dihydrodiol and (chloro)dihydroxybiphenyl
of the upper biphenyl pathway in P. xenovorans. Hydroxylated
metabolites of PCBs can affect bacterial DNA content, inhibiting
cell separation (Hiraoka et al. 2002). The toxicity of metabolites
generated during the oxidation of PCBs may partly explain the re-
calcitrance to the biodegradation of these pollutants. Biotransfor-
mation of PCBs into more toxic derivatives is a well-documented
phenomenon analogous to the activation in higher organisms of
xenobiotics and drugs. For example, the oxidation of specific com-
pounds by cytochrome P450 generates cytotoxic or carcinogenic
products (Fig. 2). Cytochrome P450 activates carcinogenic com-
pounds, producing electrophilic intermediates that can bind to
DNA, leading to mutations and cellular transformation associ-
ated with cancer development (Abu-Bakar et al. 2022). Conversely,
the induction of chloroacetaldehyde dehydrogenase has been as-
sociated with a decrease in the toxic chlorinated aliphatic com-
pounds resulting from PCB degradation (Denef et al. 2005). In
this context, cellular mechanisms provide a defense against these
toxic aromatic metabolites. For example, BphK is a glutathione
S-transferase that occurs in diverse biphenyl pathways (Bar-
tels et al. 1999). BphK catalyzes the dehalogenation of 3-chloro-
2-hydroxy-6-oxo-6-phenyl-2,4-dieneoates, compounds that are
produced by the metabolism of PCBs by the catabolic en-
zymes BphA, BphB, and BphC (Fortin et al. 2005), which in-
hibit the next enzyme, BphD. BphK is also able to dehalogenate
4-chlorobenzoate, the product of 4-chlorobiphenyl degradation
(Gilmartin et al. 2003).

Furthermore, chlorobenzoates, which are often dead-end
products in bacterial PCB metabolism, can be converted into
harmful downstream compounds such as chlorocatechols. 3-
Chlorocatechol can inactivate extradiol dioxygenases, such as the
2,3-dihydroxybiphenyl 1,2-dioxygenase, therefore disrupting the
upper biphenyl degradation pathway (Vaillancourt et al. 2002).
Funneling of 4-chlorocatechol into the widespread £3-ketoadipate
pathway can result in the production of the antibiotic pro-
toanemonin (Blasco et al. 1995) (Fig. 2), which has been suggested
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to decrease the survival of PCB-degrading organisms in soil mi-
crocosm studies (Blasco et al. 1997).

Studies using the PCB-degrading strains P. xenovorans and R.
jostiit RHAL also demonstrated that the toxicity of PCBs arises
mainly from the production of harmful metabolites during the
degradation (Seeger 1996, Parnell et al. 2006). While PCBs are as-
sociated with the cell membrane fraction, no significant effects on
bacterial viability or growth rate were observed under nondegrad-
ing conditions. However, significant strain-dependent differences
emerged when cells metabolized PCBs, with P. xenovorans showing
high tolerance to PCB degradation-related toxicity, whereas strain
RHA1 was highly sensitive (Parnell et al. 2006).

Metabolic adaptation to oxidative stress

Aromatic-degrading bacteria such as P. xenovorans LB400 and P.
putida KT2440 possess strong NADPH-consuming antioxidative
systems that deal with ROS accumulation during the catabolism
of aromatic compounds (Ponce et al. 2011, Rodriguez-Castro et al.
2019, Nikel et al. 2021). Therefore, maintaining a high reducing
power pool (NADPH/NADP™ ratio) by rerouting carbon source me-
tabolization contributes to ROS detoxification by key antioxidant
systems, such as glutathione, thioredoxins, and alkyl hydroper-
oxide reductases (Pastor et al. 2019, Nikel et al. 2021). The most
common mechanism to manage oxidative stress involves the ac-
tion of ROS-detoxifying enzymes such as catalases, peroxidases,
and hydroperoxide reductases. The corresponding reactions con-
sume metabolic NADPH, which provides the reductive power to
counteract the toxic effects of ROS via reduced glutathione (Tam-
burro et al. 2004). For example, the glutathione cycle, which con-
nects the reduced (GSH) and the oxidized (GS-SG) forms of the
thiol, is a preferred reductant of ROS via the glutathione perox-
idase and glutaredoxin enzymes. Thus, the reduced glutathione

pool is restored by using NADPH as a reductant (Vagkova et al.
2023).

Pseudomonas aeruginosa PAO1 and other pseudomonads catab-
olize glucose predominantly through the Entner-Doudoroff (ED)
pathway, which is extremely efficient in generating the NADPH
required for the function of several antioxidant responses with
low protein expenses (Chavarria et al. 2013, Berger et al. 2014).
Similarly, P. aeruginosa can adapt and arrange central metabolism
to efficiently utilize different carbon sources, maintaining NADPH
and anabolism, allowing it to survive under various environmen-
tal conditions (Dolan et al. 2020). An increase in the NADPH pool
provides robust machinery for metabolizing novel xenobiotic sub-
strates in P. putida (Akkaya et al. 2018).

Genome-guided metabolic reconstruction revealed that in P.
xenovorans, sugars are metabolized via the ED, pentose phosphate
(PP), and lower Embden-Meyerhof-Parnas (EMP) pathways, which
produce more reducing power through NADPH synthesis than the
complete EMP glycolysis (Alvarez-Santullano et al. 2021) (Fig. 3).
Furthermore, P. xenovorans LB400 exhibits higher gene redundancy
in carbohydrate and fatty acid metabolism compared to other
Burkholderia sensu lato strains, suggesting higher robustness and
versatility (Alvarez-Santullano et al. 2021). These metabolic net-
works allow the adaptation under the changing environmen-
tal conditions where species of Paraburkholderia and Pseudomonas
strains inhabit.

During aromatic metabolism, P. xenovorans channels the degra-
dation products into the central carbon metabolism through
the Krebs cycle and the gluconeogenic pathways to produce re-
ductive power and anabolic precursors (Fig. 3A). Central car-
bon metabolism in P. xenovorans possesses high gene redundancy
that confers robustness against stress. For example, the ROS-
sensitive [4Fe-4S|-dependent aconitase (BxeB2903) is downreg-
ulated in P xenovorans exposed to the herbicide paraquat, up-
regulating the oxidation-resistant enzymes aconitase (BxeB1533)
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catabolism of aromatic compounds, and (B) metabolism of stress-related molecules. Intermediates in bold are anabolic precursors for the synthesis of
stress-related molecules. 1, Citrate synthase (GltA1 and GItA2). 2, Aconitate hydratase (AcnAl and AcnA?2). 3, Isocitrate dehydrogenase (Idh1, Idh2, and
Idh3). 4, 2-Ketoglutarate dehydrogenase (SucA). 5, Succinyl-CoA synthase (SucC). 6, Succinate dehydrogenase (SdhC). 7, Fumarate hydratase (FumcCB).
8, Malate dehydrogenase (Mdh). 9, Isocitrate lyase (Mtbl). 10, Malate synthase (AceB or GlcG). 11, Malate dehydrogenase (oxaloacetate decarboxylating)
(MaeB1, MaeB2, and MaeB3). 12, Oxaloacetate decarboxylase (Oad). 13, Phosphoenolpyruvate (PEP) carboxykinase (PckG). 14, Fructose-1,6-biphosphate
(FBP) aldolase (CbbA1, CbbA2, and CbbA3). 15, FBP 1,6-biphosphatase (Fbpl and Fbp2). 16, Glucose-6-phosphate isomerase (Pgi). 17,
Glucose-6-phosphate dehydrogenase (Zwf1, Zwf2, and Zwf3). 18, Phosphogluconolactonase (Pgl). 19, 6-Phosphogluconate dehydrogenase (Pgdhl and
Pgdh?2). 20, 6-Phosphogluconate dehydratase (Edd). 21, 2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (Eda). 22, Proton translocating
transhydrogenase (PntAB). 23, NADP-dependent ferredoxin oxidoreductase (Fpr). G3P, glycerate-3-phosphate. GAP, glyceraldehyde-3-phosphate. 6-PGL,
6-phosphogluconolactone. PhaZ, poly(3-hydroxybutyrate) (P(3HB)) depolymerase. PhaY, P(3HB) oligomer hydrolase. P(3HB), poly(3-hydroxybutyrate).
(R)-3HB, (R)-3-hydroxybutyrate. NRPS, nonribosomal peptide synthase. SerA, p-3-phosphoglycerate dehydrogenase. SerC, phosphoserine
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L-ornithine-5-monooxygenase (Vargas-Straube et al. 2016). PhaA, 2-ketothiolase. PhaB, (R)-3-hydroxybutyryl-CoA reductase. PhaC,
polyhydroxyalkanoate (PHA) synthase (Urtuvia et al. 2018). PPO, PEP, pyruvate, oxaloacetate node. EMP, Embden-Meyerhof-Parnas. ED,
Entner-Doudoroff. Non-OxPP, the nonoxidative branch of pentose-phosphate (PP) pathway. Ox-PP, oxidative branch of the PP pathway. NADPH
formation is highlighted in the corresponding enzymatic reactions. Central metabolic pathways were evaluated in P. xenovorans LB400 through the
BlastKO software of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Enzymes were corroborated through the bidirectional best-hit
approach using the BlastP tool against the Swiss-Prot curated database considering sequences identities >30% and alignment coverage >70% of the
query sequence. Sequences with empirical evidence at the transcript or protein level were considered as references. Gene context was also evaluated
with the KEGG genome database.

and fumarase hydratase FumC (BxeA1038) (Méndez et al.
2022a).

On the other hand, P. xenovorans possesses an incomplete gly-
colytic EMP pathway due to the absence of phosphofructokinase
(Pfk). Therefore, glycolysis occurs through the ED and PP pathways

(Fig. 3A). The incomplete glycolytic EMP pathway has been de-
scribed in Pseudomonas and Chromohalobacter species, while a cyclic
arrangement among the PP, ED, and gluconeogenic EMP pathways
efficiently produces NADPH to counteract ROS (Pastor et al. 2019,
Nikel et al. 2021, Wilkes et al. 2023). The incomplete glycolytic
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EMP is common in Paraburkholderia and Caballeronia species and
to a lower extent in Burkholderia species (Alvarez-Santullano et al.
2021).

Genomic analysis of NADPH regenerative
pathways in P. xenovorans

The cofactor NADPH is an important source of reductive power
to counteract endogenous oxidative stress and also participates
in the anabolism of biological molecules (Fig. 3B). The reduction
of NADP* into NADPH can be conducted by the central carbon
metabolism enzymes, such as glucose-6-phosphate dehydroge-
nase (Zwf), phosphogluconate dehydrogenase (Pgdh), isocitrate
dehydrogenase (Idh), malic enzyme (MaeB), and malate dehydro-
genase (MdhB). In P. xenovorans, the genome harbors a notably
high copy number of genes encoding the NADPH-regenerating
enzymes Zwf, Pgdh, MaeB, MdhB, and Idh, relative to other cen-
tral carbon metabolism enzymes (Table S2). This genetic redun-
dancy, an attribute of strain LB400, correlates with its metabolic
plasticity and robustness in modulating intracellular NADPH
levels. In P. xenovorans LB400, the Zwf enzymes are encoded
by the zwfl (BxeA3452), zwf2 (BxeB0215), and zwf3 (BxeB1764)
genes, whose genomic contexts are related to the central car-
bon metabolism, storage polymer accumulation (e.g. glycogen
and polyphosphates), and serine synthesis, respectively. These ge-
nomic features may be a trait for adapting to nutrient-deprived
environments or to fulfill anabolic demands (Alvarez-Santullano
et al. 2021). The redundancy of Zwf isoenzymes correlates with
the presence of the ED pathway as the unique glycolytic strategy,
in contrast to organisms utilizing the EMP pathway. Pseudomonas
putida KT2440, which utilizes the ED pathway, encodes three Zwf
isoforms with distinct NAD(P)* cofactor specificities (Volke et
al. 2021), potentially conferring metabolic flexibility to modu-
late the cellular redox balance under stress conditions. Similarly,
the idhl (BxeA0797) and idh2 (BxeB0532) genes encode NADP*-
dependent Idh enzymes, while the idh3 gene (BxeC0665) encodes
a NAD"-dependent enzyme, which may be useful to modulate the
intracellular NADPH/NADH ratio according to cellular require-
ments. Interestingly, the NADP*-dependent Idh enzyme is sig-
nificantly more abundant in P. xenovorans cells grown on ben-
zoate compared with succinate-grown cells (Denef et al. 2005).
In addition, P. xenovorans harbors three NADP*-dependent maeB
genes that encode the NADP*-dependent malic enzyme. A gene
copy (BxeA0283) is located next to the fldx1 gene that plays an
important role by increasing reducing power during growth on
hydroxyphenylacetates (Rodriguez-Castro et al. 2019, 2024). An-
other redox-regulating mechanism is the reduction of NADP* us-
ing NADH as a cofactor by the transhydrogenase enzyme PntAB,
which is also redundant in P. xenovorans (Table S2) (Spaans et
al. 2015). The pntAB gene (BxeA4006) is located upstream of a
paraquat-inducible transporter (Nakayama and Zhang-Akiyama
2017), showing a favorable genetic context for response to toxic
compounds. An alternative source of NADPH in P. xenovorans is the
ferredoxin NADPH oxidoreductase Fpr, encoded by the BxeA4345
gene, which possesses a 63% amino acid identity with the Fpr en-
zyme of Azotobacter vinelandii OP1 that reduces NADP* and oxi-
dizes NADPH (Fig. 3A) according to the intracellular redox condi-
tions (Sridhar et al. 1998).

Polyhydroxyalkanoate synthesis as an adaptive
strategy

In response to nutrient imbalance (e.g. carbon excess and nitro-
gen or phosphorus scarcity), bacteria and archaea modify their

metabolism to synthesize and accumulate different biomolecules,
such as polyhydroxyalkanoates (PHAs), triacylglycerols, wax es-
ters, and polyphosphates (Urtuvia et al. 2018, Obruca et al.
2021, Patek et al. 2021, Srivastava et al. 2022, Ben Abdallah
et al. 2025). Exogenous stresses, such as nutrient scarcity, heat
shock, and high concentration of heavy metals, can be miti-
gated through the chaperone effects of intracellular PHA gran-
ules, phasin proteins (PhaPs), and the PHA degradation prod-
ucts (R)-3-hydroxyacyl oligomers (Miller-Santos et al. 2021). In-
terestingly, the induction of PhaPs during the growth of P. xenovo-
rans LB400 on biphenyl has been observed (Denef et al. 2005). A
repertoire of five PhaPs has been described in P. xenovorans strain
LB400, including PhaP1 (BxeA1544), PhaP2 (BxeA1874), PhaP3
(BxeB0319), PhaP4 (BxeB0720), and PhaP5 (BxeB2336) (Urtuvia et
al. 2018). The PhaP1 phasin is induced by the ROS-generating her-
bicide paraquat (Méndez et al. 2022a). On the other hand, un-
der a carbon excess and nitrogen starvation, intracellular poly(3-
hydroxybutyrate) (P(3HB)), a type of PHA, in P. xenovorans accu-
mulates, upregulating the PHA synthase (phaC1; BxeA2343) and
the PHA depolymerase (phaZl; BxeA3308) genes (Urtuvia et al.
2018). The PhaC enzyme catalyzes the last step of PHB polymer-
ization, while the PhaZ1l degrades P(3HB) oligomers into (R)-3-
hydroxybutyrate ((R)-3HB), suggesting that P(3HB) mobilization
is an adaptive strategy during nutrient scarcity stress. Interest-
ingly, the P(3HB) degradation product (R)-3HB and derived com-
pounds scavenge hydroxyl radicals, exerting alternative protec-
tion against ROS in bacterial cells challenged by different stress
sources (Obruca et al. 2016, 2020, Miiller-Santos et al. 2021).

Synthesis of P(3HB) has been reported in P. xenovorans grown un-
der high carbon concentration (glucose, mannitol, or xylose) and
nitrogen-limiting conditions (Urtuvia et al. 2014, 2018), a signifi-
cant source of exogenous stress. P. xenovorans possesses complete
anabolic pathways and highly redundant NADPH regeneration
pathways to synthesize compounds (e.g. PHAs and siderophores)
from central carbon intermediates that may be obtained from the
catabolism of carbohydrates or aromatic compounds (Fig. 3). In
addition, P. xenovorans possesses the anabolic pathways to obtain
other PHAs from gluconate, fructose, glycerol, arabinose, and fatty
acids (Acevedo et al. 2018, Urtuvia et al. 2018, Alvarez-Santullano
et al. 2021).

Synthesis of P(3HB) starts from two acetyl-CoA that are con-
verted by the 3-ketothiolase PhaA into acetoacetyl-CoA, which
is reduced into the precursor (R)-3-hydroxybutyryl-CoA ((R)-3HB-
CoA) through the NADPH-dependent acetoacetyl-CoA reductase
PhaB (Fig. 3C). NADPH utilization as a cofactor by the PhaB enzyme
places PHAs synthesis as a reductive power sink or as a “pseudo
fermentation” (Obruca et al. 2020, Velazquez-Sanchez et al. 2020).
(R)-3HB-CoA is finally polymerized by PHA synthases (PhaC) into
P(3HB) (Fig. 3C).

Paraburkholderia xenovorans synthesizes PHAs from the g-
oxidation intermediates trans-enoyl-CoA and (S)-3-hydroxyacyl-
CoA, catalyzed by the R-specific enoyl-CoA hydratase PhaJ
(BxeB0140) and the epimerase activity of a (S)-3-hydroxyacyl-CoA
dehydrogenase multienzyme complex FadB (BxeC0280) into (R)-3-
hydroxyacyl-CoA ((R)-3HA-CoA). (R)-3HA-CoA can be further poly-
merized into PHA. An additional 3-ketothiolase enzyme (BktB) en-
coded by BxeA2335 in P. xenovorans yields ketovaleryl-CoA from
propionate-CoA and acetyl-CoA, which can be further reduced
into the PHA precursor (R)-3-hydroxyvaleryl-CoA to obtain the
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Over-
all, the type of PHA depends on the chain length of the acyl moi-
ety of the (R)-3HA-CoA precursor and the PHA synthase class.
Paraburkholderia xenovorans possesses the BxeA2343 gene encoding
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a class I PHA synthase PhaC1, which is located in the phaC1ABR
gene cluster upstream of the bktB gene. Two additional PHA syn-
thases encoded by the phaCl (BxeB0358) and phaC2 (BxeC0053)
genes are arranged in the phaC2J1, phaC3J2 gene clusters and are
phylogenetically distant from PhaC1 (Urtuvia et al. 2018). PhaCs
are highly redundant in Paraburkholderia species, and their distri-
bution among the Burkholderiales order shows four major groups
(Alvarez-Santullano et al. 2021). Sequences of groups A and B are
related to class I PHA synthases. Sequences of group C are related
to class 1I PHA synthases. Sequences of group D are the most dis-
tant PhaCs from previously described classes. The PHA synthases
from group D are present in several Burkholderiales species, en-
coded in a genomic context related to acetate metabolism, amino
acid metabolic regulation, and fatty acid metabolism (Alvarez-
Santullano et al. 2021). In C. necator H16, the PhaC2 (group D) par-
ticipates in the synthesis of P(3HB) during low-oxygen stress. It is
regulated by a universal stress protein (UspA) thatis encoded next
to the phaC2 gene (Tang et al. 2022). A Janthinobacterium strain from
Antarctica, belonging to the Burkholderiales order, harbors a func-
tional PhaC2 classified within phylogenetic group D, whose activ-
ity increases at suboptimal growth temperatures, indicating a po-
tential role in cold adaptation (Tan et al. 2020). These metabolic
pathways suggest that P. xenovorans possesses the genes to synthe-
size diverse PHA copolymers from a wide range of carbon sources,
which is part of the strategy to overcome stress upon nutritional
imbalance.

Additionally, P. xenovorans LB400 harbors four intracellular PHA
depolymerases (BxeA3308, BxeB2941, BxeB2846, and BxeA3270),
which are similar to the depolymerases PhaZz1, Phaz2, Phaz6, and
PhaZ7 described in C. necator H16 (Table S2). The PhaZ1 performs a
thiolytic degradation of P(3HB) into crotonyl-CoA via (R)-3HB-CoA
formation. Crotonyl-CoA may enter the g-oxidation of fatty acids
via (S)-3-hydroxybutyryl-CoA, yielding acetyl-CoA and NADH (Eg-
gers and Steinblchel 2013). The PhaZ2, PhaZ6, and PhaZ7 de-
polymerases degrade P(3HB) into (R)-3-hydroxybutyrate ((R)-3-HB)
monomers and P(3HB) oligomers (Abe et al. 2005, Gebauer and
Jendrossek 2006, Sznajder and Jendrossek 2014). (R)-3HB is an im-
portant antioxidant molecule that protects cells against protein
aggregation and cellular damage caused by ROS (Miiller-Santos
et al. 2021). (R)-3-HB can be reduced into acetoacetate by a (R)-
3-HB dehydrogenase (HBDH). Acetoacetate can be activated into
acetoacetyl-CoA, an intermediate of the g-oxidation of fatty acids
and P(3HB) synthesis (Fig. 3). Finally, P. xenovorans harbors two
oligomer hydrolases, PhaY1 and Pha¥Y?2, encoded by BxeA2223 and
BxeA1368 that may degrade P(3HB) oligomers into (R)-3HB (Sae-
gusa et al. 2002).

Osmoadaptation to saline stress

During bioremediation, bacteria are subjected to challenges such
as oxidative stress, nutrient scarcity, and high salinity, which in-
crease cell osmolarity and reduce water activity, impairing mi-
crobial function and community stability (Stevenson et al. 2015,
Kumar et al. 2022). Some bacteria develop adaptive responses
to salinity, which may affect their pollutant degradation effi-
ciency (Atoufl et al. 2020, Xu et al. 2023). Adaptation strate-
gles include the maintenance of internal ion balance via trans-
porters and pumps, and the relieve of membrane tension through
mechanosensitive channels (Sweet et al. 2021, Wang and Blount
2023). Haloadaptation also involves transport systems such as
ABC transporters, PutP, threonine efflux proteins, and ammonium
transporters (Kaur and Kaur 2024). Salt stress may trigger the an-
tioxidant response in bacteria (Smirnova et al. 2000), a well-known
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phenomenon in plants (Chourasia et al. 2021). Notably, some bac-
teria such as Acinetobacter halotolerans, Halomonas cupida J9, R. ery-
thropolis sp. YHLT-2, Bacillus sp. Z-13, and Bacillus licheniformis de-
grade POPs under saline conditions (Longang et al. 2016, Zhang et
al. 2023, Srimathi et al. 2024).

The second strategy in response to saline conditions involves
maintaining a low intracellular salt concentration and balanc-
ing osmotic pressure by producing compatible solutes, such as
betaine and ectoine (Schwibbert et al. 2011, Guo et al. 2019).
Different Gammaproteobacteria strains have the metabolic ca-
pability to synthesize compatible solutes such as glycine be-
taine. In Sinorhizobium meliloti and Halomonas elongata, glycine be-
taine is synthesized from choline through a pathway encoded
by the betICBA operon that involves the conversion of choline
to betaine aldehyde and then to glycine betaine (Osterds et
al. 1998, Canovas et al. 2000). Representatives of the genus
Arthrobacter possess the metabolic capacity to degrade PCBs, tri-
azines, and benzene under fluctuating osmotic pressure condi-
tions. As an adaptation strategy, Arthrobacter sp. B6 has an ABC-
type glycine betaine/carnitine/choline and proline/betaine alkali
transporters, enabling the accumulation of compatible solutes,
including choline, glycine betaine, and valine, thereby increasing
tolerance to osmotic and saline stress (Xu et al. 2017, Guo et al.
2019).

In addition, in saline environments, the cytoplasmic membrane
of bacteria may significantly increase the acidic phospholipid car-
diolipin content (Zhang and Rock 2008). Cardiolipin confers pro-
tection against saline stress and also against organic compounds
(Zhang and Rock 2008, Dercova et al. 2019).

Bacterial synthesis of compatible solutes prevents dehydration
by restoring cell volume and turgor pressure in response to the in-
creased salinity of the environmen. In this study, identification of
molecular determinants in P. xenovorans associated with salinity
was performed using the BLASTp tool (Altschul et al. 1990). Pro-
tein sequences obtained from the NCBI platform and compared
with the Uniprot KB-Swiss Prot database, using experimentally
corroborated sequences. The cutoff values for positive matches
were >40% identity and >70% coverage. Paraburkholderia xenovo-
rans possesses genes encoding proteins involved in the synthe-
sis and transport of compatible solutes, such as glycine-betaine,
proline, and trehalose (Fig. 4; Tables S3-S5). Through choline,
proline/betaine transporters BetT, OusA, ProP, ProV, and ProW,
choline, proline, and betaine molecules enter the cell (Kappes et
al. 1996). The genes encoding ProP (BxeA1509), ProV (BxeB1616),
and Prow (BxeB1615) were identified in P. xenovorans (Table S4).
In contrast, the betB gene (glycine/betaine/choline transporter)
is absent in the LB400 genome. The pathway associated with
the synthesis of the compatible solute glycine/betaine, involv-
ing betA (choline dehydrogenase; BxeB1592), betB (betaine alde-
hyde dehydrogenase), and its regulator betI (BxeB1590), were iden-
tified, showing >95% identity to their homologs in P. aromaticivo-
rans (Tables S3 and S5). In the context of PCB degradation, the
metabolic reconstruction of glycin/betaine synthesis in P. xenovo-
rans strain LB400 suggests that this metabolism may be associated
not only with an adaptive response to saline stress but also as a
strategy to alleviate oxidative stress generated by the combination
of (i) PCB metabolism, and (ii) environmental stresses related to
fluctuations in salinity, desiccation, and/or turgor pressure, sim-
ilar to what may occur inside P. aromaticivorans cells during the
degradation of aromatic and aliphatic hydrocarbons in saline en-
vironments (Lee and Jeon 2018, Lee et al. 2019). In E. coli, glycine—
betaine and choline are the primary compatible solutes under hy-
persaline conditions (Sleator and Hill 2002).
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Figure 4. Prediction of adaptive responses to saline stress in P. xenovorans LB400. Under high osmolarity conditions, compatible solutes accumulate at
high concentrations within the cell. After controlling turgor imbalance, large conductance mechanosensitive channels (MscL) rapidly release edible
solutes and larger molecular metabolites. The ATP-dependent K™ transporter (KdpFABC) actively drives potassium into the cell under low intracellular
K* concentration conditions, contributing to the regulation of cellular osmotic pressure. The ectoine/5-hydroxyectoine transporter (EhuABD) allows
the uptake of these compatible solutes, which can be metabolized in the P. xenovorans cell as a carbon and energy source through the expression of the
doeABDC genes, yielding L-aspartate as the final product, and acetate, 2-oxoglutarate, and glutamate as metabolic intermediates. The transporters for
compatible solute precursors (ProU, ProP, and OusA) enter glycine-betaine and L-proline and their precursors, such as choline/betaine, into the cell,
which are dehydrogenated by the enzymes BetA and BetB to form glycine-betaine. Betl is the negative transcriptional regulator of the betAB genes,
activated by increased glycine-betaine osmoprotectant concentration. ProU directly imports the osmoprotectant. Trehalose plays a dual role in
cellular regulation under saline stress, acting either as a compatible solute (trehalose) in response to osmotic pressure fluctuations or as a carbon and
energy source when it is metabolized into glucose and glucose-6-phosphate. The identified determinants associated with compatible solutes in the
genome of P. xenovorans are highlighted in bold. Protein sequences obtained from the NCBI (National Center for Biotechnology Information) platform
were selected and cross-referenced with the Uniprot KB-Swiss Prot database to determine molecular determinants associated with salinity using
experimentally validated sequences as a filter. The cutoff values for positive alignments were set at identity and coverage higher than 40% and 70%,

respectively. Created in https://BioRender.com.

Paraburkholderia xenovorans possesses genes associated with the
trehalose synthesis pathway from glucose-6-phosphate, includ-
ing OtsA (trehalose-6-phosphate synthase) and OtsB (trehalose-
6-phosphate phosphatase) (Lee et al. 2023). Trehalose is one of
the most prominent protein stabilizers in bacteria, protecting
the native conformation of cytoplasmic proteins (Ruhal et al.
2013). Additionally, P. xenovorans has genes for the degradation
of compatible solutes, which can be utilized as a carbon source
through the PP and the ED pathways. This is another exam-
ple of how P. xenovorans may modulate metabolism as an adap-
tive strategy to challenging environmental conditions (Fig. 4).
Genes encoding ProH (pyrroline-5-carboxylate synthase), ProJ (y-
glutamate kinase), and ProA (y-glutamyl phosphate reductase)
were identified in the genome of P. xenovorans, which allow the
aerobic synthesis of proline from glutamate (Pérez-Arellano et al.
2010).

In the genome of P. xenovorans, proteins encoded by the genes
BxeC0063, BxeC0058, BxeC0060, and BxeC0061 have high identity

(>55%) with the ectoine-degrading enzymes DoeA, DoeB, DoeC,
and DoeD, however, genes encoding for ectoine synthesis were not
identified. In P. xenovorans, the doe genes are not clustered in an
operon (Table S3). The expression of the doe genes is associated
with the use of ectoine as a carbon and energy source (Galisteo
et al. 2024). The doeA and doeB genes are predominant in rhizobial
Alphaproteobacteria and Burkholderiales.

The genomic search of saline stress-associated transporters
identified proline/betaine transporter ProP, ABC proline/glycine
transporter subunit ProV and inner membrane subunit Prow, and
large-conductance mechanosensitive channel K* transporters
KdpFABC and MscL. An ectoine ABC transporter was identified
with a high identity toits homolog in P. susongensis (Fig. 4; Table S4).
In E. faecalis V583, in response to high salinity conditions, K* is
uptaken by the potassium-transporting ATPase (kdpFABC operon),
which is regulated by the sensor kinase KdpD and transcriptional
factor KdpE (kdpED operon), whereas Na* is extruded by the V-
type sodium ATPase (ntpFIKECGABD] operon) (Acciarri et al. 2023).
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In the context of bioremediation of saline soils contaminated
with aromatic compounds, including PCBs, the metabolism of aro-
matic compounds by P. xenovorans LB400 and P. aromaticivorans BN5
may be linked to the osmoadaptation, including the biosynthe-
sis of glycine/betaine. Osmoadaptation and glycine/betaine may
play a role under increased salinity in (i) maintaining cellular os-
motic balance (turgor pressure), (i) stabilizing the cell membrane,
and (iii) enhancing the antioxidant response (Figueroa-Soto and
Valenzuela-Soto 2018). This suggests that the key functions of
compatible solutes, such as glycine/betaine, extend beyond their
well-established roles in salt and osmotic stress response. These
strategies not only promote osmoprotection but also confer in-
creased metabolic efficiency, improving the utilization of contam-
inants as carbon and energy sources under dynamic environmen-
tal stress conditions.

While most studies on salt stress responses in the genus
Paraburkholderia focus on rhizobacteria, the findings presented in
this review, involving species capable of degrading contaminants
in complex, multistress environments, pave the way for under-
standing how hostile environmental conditions drive the evolu-
tion of conserved cellular defense mechanisms. Functional stud-
ies are required to characterize the oxidative and osmotic stress
responses, the accumulation of compatible solutes, and the regu-
lation of carbon and energy metabolism, which may together en-
hance survival and biodegradation efficiency in extreme environ-
ments.

Synthesis of siderophores under iron
limitation

Nutrient limitations, such as iron scarcity, are a source of exoge-
nous stress, significantly impacting bacterial biodegradation by
restricting growth and metabolic processes. Iron limitation is a
challenge for bacterial growth and biodegradation, but also drives
the evolution of adaptive strategies of microbial communities in
nutrient-limited environments. Ferric ion, most commonly found
inits Fe(Ill) oxidation state, has a low bioavailability due to its poor
solubility at neutral pH in the presence of oxygen (Neilands 1995).

One of the most well-known strategies to support iron limi-
tation is the production of siderophore compounds that have a
high affinity and selectivity for Fe(Ill) (Hider and Kong 2010). Al-
ternative mechanisms developed by prokaryotic strains include
the synthesis of alternative electron transport chain components
(Shafile et al. 2022), Fur- and sRNA-based transcriptional regula-
tion (Nelson et al. 2019), and cross-regulation with other nutri-
ents (e.g. phosphonate, starch) (Cheng et al. 2021). Siderophores
are low molecular mass (<2 kDa) Fe(Ill) carriers containing gen-
erally hydroxamate, e-hydroxycarboxylate, and catechol ligands
to bind iron with high affinity under iron-limiting conditions (Nei-
lands 1995).

Iron is an essential micronutrient for diverse metabolic pro-
cesses such as respiration, the Krebs cycle, oxygen transport, DNA
synthesis, nitrogen fixation, methanogenesis, and photosynthe-
sis. Iron is part of the iron-sulfur clusters, di-iron centers, and
heme cofactors of proteins. Under iron limitation, bacteria mod-
ify metabolic pathways, reducing the synthesis of iron-containing
proteins and affecting overall metabolic efficiency, which can in-
terfere with biodegradation processes (Dinkla et al. 2001, Men-
donca et al. 2020, Yue et al. 2023).

In response to nutrient limitation, bacteria modify their
metabolism, for example, by changing substrate preference. In
iron-deficient soils, soil Pseudomonas species prioritize siderophore
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biosynthesis through a hierarchical carbon metabolism strategy,
enhancing iron uptake from soil (Mendonca et al. 2020). This
metabolic reprogramming involves increasing flux toward glu-
coneogenic substrates, which leads to a significant increase in
siderophore synthesis and iron scavenging and a decrease in
other metabolic processes (Mendonca et al. 2020). The activity of
toluene monooxygenase and the lower pathway enzymes in the
P. putida strains mt2 and WCS358 is significantly reduced under
iron limitation, affecting toluene biodegradation efficiency (Din-
kla et al. 2001).

Under iron-limiting conditions, P. xenovorans synthesizes a
hydroxamate-type siderophore. The mba gene cluster from P. xen-
ovorans strain LB400 encodes nonribosomal peptide synthetase
(NRPS) and several transport genes for the siderophore (Vargas-
Straube et al. 2016). The proposed structure of the malleobactin
siderophore is L-N§-hydroxy-Ns-formylOrn-p-8-hydroxyAsp-L-
Ser-L-N§-hydroxy-Né-formylOrn-1,4-diaminobutane, which is
closely related to malleobactin-type siderophores reported in
Burkholderia thailandensis. Paraburkholderia xenovorans possesses
the complete pathways to synthesize each of these components
from central metabolism intermediates (e.g. pyruvate, acetyl-
CoA, 2-ketoglutarate, and glycerate-3-phosphate) (Fig. 3B). The
promoters in the mba gene cluster strongly suggest regulation
by the ferric uptake regulator (Fur) protein and the alternative
extracytoplasmic function sigma factor MbaF.

In Burkholderia sensu lato, diverse NRPS systems for siderophore
synthesis have been described (Donadio et al. 2007, Thomas 2007).
Malleobactin is produced by Burkholderia pseudomallei, Burkholde-
ria mallei, and B. thailandensis (Alice et al. 2006, Franke et al.
2013, Franke et al. 2015). Burkholderia vietnamiensis, Burkholderia
cepacia, Burkholderia ambifaria, and Burkholderia cenocepacia synthe-
sized ornibactin (Meyer et al. 1995, Agnoli et al. 2006). Additional
siderophores have been reported, such as cepabactin in B. cepacia
(Meyer et al. 1995), pyochelin in B. pseudomallei (Alice et al. 2006),
and cepaciachelin in B. ambifaria (Thomas 2007).

Proteos_tasis network in P. xenovorans and
degrading bacteria

Proteostasis or protein homeostasis in bacteria refers to the highly
flexible network involved in the biosynthesis, folding, traffick-
ing, and degradation of proteins (Santra et al. 2017). Cellular
proteostasis is supported by a highly flexible network that in-
cludes chaperones, proteases, and folding catalysts such as PPI-
ases, oxidoreductases, and S-S bond isomerases. This network al-
lows the modulation of the proteome to environmental changes
toward an adaptive response (Voth and Jakob 2017). The pro-
teostasis network is crucial for the adaptation to environmental
stresses such as extreme temperatures and other harmful condi-
tions (Ferrer et al. 2003). Chaperones play a key role in the cellu-
lar response against stress by supporting protein folding, prevent-
ing aggregation, and maintaining protein homeostasis (Hidalgo
1996, Goemans et al. 2018). Chaperones can be classified into two
groups: (i) the foldase chaperones that participate in the folding
of nascent proteins or unfolded mature proteins. With few ex-
ceptions, most of these chaperones are ATP-dependent and their
functions ensure that many proteins attain their native confor-
mation, and (ii) the ATP-independent holdase chaperones that act
by binding exposed hydrophobic aminoacidic sequences of un-
folded, partially folded, or misfolded proteins, therefore prevent-
ing their aggregation or degradation. The foldase group includes
GroEL/ES (Ryabova et al. 2013), DnaK-DnaJ/CbpA/DjlA-GrpE com-
plex (Genevaux et al. 2001, Azaharuddin et al. 2023), ClpB (Uchi-
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Figure 5. Evolutionary relationships of the bacterium P. xenovorans with other relevant aromatic-degrading bacterial strains, and abundance of genes
encoding chaperones and proteases in their genomes. (A) Phylogenetic tree of aromatic-degrading Burkholderiales and other bacteria. Evolutionary
phylogenetic tree of bacterial 165 rRNA genes were constructed with MUSCLE alignment (Edgar 2004) and Maximum-likelihood clustering (1,000
bootstrap). (B) The genomes of P. xenovorans LB400, C. metallidurans CH34, B. cepacia ATCC 25416, P. putida (NBRC 1416 and KT2440), A. evansii KB740, R.
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number of gene copies. Genome sequences were obtained from the National Center for Biotechnology Information (NCBI) database. The strains and
genome accession codes are listed in Table S1. Assessment of classical cytoplasmic chaperones (TF, Dnak, DnaJ, DjlA, CbpA GrpE, GroEL, GroES, HtpG,
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hashi et al. 2018), HtpG (Mangla et al. 2023), trigger factor (TF)
(Wu et al. 2022), HscA/B (Puglisi and Pastore 2018), MsrA/B (Ezraty
et al. 2005), and YidC (Zhu et al. 2013). The holdase chaperones
group include Hsp20 (Sato et al. 2024), Hsp31 (Chatterjee et al.
2018), Hsp33 (Krewing et al. 2019), CnoX (Goemans et al. 2018),
RidA (Muller et al. 2014), Skp and SurA (Thoma et al. 2015), Spy
(Mitra et al. 2021), HdeA/B (Thapliyal and Mishra 2024), SIpA (Gre-
itner et al. 2017), and SlyD (Kovermann et al. 2013). Some holdase
chaperones are constantly active, while others are activated only
under certain stress conditions (Kim et al. 2021). The gene copy
number of chaperones such as heat shock protein 70 (Hsp70),
Hsp60, Hsp40, and small HSP (sHsp) has increased during the evo-
lution of each of the bacteria, archaea, and eukarya domains (Pow-
ers and Balch 2013). Modification of diverse chaperones through
inserts and deletions (indels) (e.g. Hsp70 and Hsp60) has been
tracked to the evolution of diverse bacterial taxa, which also in-
dicates that Proteobacteria, including Burkholderiales, are more
recently evolved bacterial taxa (Gupta 2016). Figure 5(A) presents
a phylogenetic tree of aromatic-degrading and nondegrading
bacterial strains, providing insights into their adaptive mecha-
nisms to aromatic compounds, oxidative stress, and environmen-
tal stressful conditions within an evolutionary and taxonomic
context.

Most of the unfolding and aggregation of proteins that occur
during stress in bacteria are managed by upregulating the ATP-
dependent chaperones. The most well-known chaperones include
GroEL, Dnak, HtpG, and ClpB (Hartl et al. 2011). In E. coli cells,
due to the inactivation of redox-regulated metabolic enzymes in-
volved in ATP-generating pathways, the stress induced by ROS ac-
cumulation leads to a decrease of up to 50% in intracellular ATP
concentration (Winter et al. 2005, 2008). A decrease in ATP levels
impacts the activity of ATP-dependent chaperones and proteases.
Consequently, the upregulation of an alternative proteostasis net-
work, which includes ATP-independent chaperones, is a key strat-
egy for managing oxidative stress.

The proteostasis network is shaped by foldase (mainly ATP-
dependent) and holdase (ATP-independent) chaperones and pro-
teases, which are grouped into four categories that include:
classical chaperones, stress chaperones, AAA+ proteolytic com-
plexes, and membrane/periplasmic chaperones or proteases. The
proteostasis network was analyzed and compared in aromatic-
degrading P. xenovorans, Burkholderiales strains, and other rele-
vant bacteria in biodegradation and bioremediation (Fig. 5B; Table
S1). For comparison, nondegrading pathogenic strains, such as E.
coli strains O157:H7 and BW25113, and Salmonella enterica, were
also analyzed. For this analysis, the complete genome of each
bacterium was obtained from the National Center for Biotechnol-
ogy Information (NCBI) database and bioinformatically inspected
using SnapGene 6.0.2 software. Identified genes and predicted
protein products were analyzed by sequence comparison using
NCBI Blast tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The se-
quence of every gene and protein was verified by alignment analy-
sis using Clustal Omega (https://www.ebi.ac.uk/jdispatcher/msa/
clustalo) and the COBALT Multiple Alignment Tool from NCBI
(https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi). The pres-
ence of conserved domains/motifs and ATP-binding site of each
identified protein was also confirmed using CDART (Conserved
Domain Architecture Retrieval Tool) and CDD (Conserved Do-
mains) tools from NCBI (https://www.ncbi.nlm.nih.gov/cdd). The
main findings of this study are described below.

Classical chaperones

The classical ATP-dependent foldase chaperone systems
DnaK/DnaJ/GrpE and GroEL/GroES promote refolding of pro-
tein substrates (Castanié-Cornet et al. 2014). DnaK is involved
in newly synthesized polypeptide folding, preventing protein
misfolding and aggregation (Castanié-Cornet et al. 2014). DnakK
binds to exposed hydrophobic regions of its substrates and pro-
motes protein refolding in an ATP-dependent process regulated
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by the cochaperone DnaJ (Mayer and Bukau 2005) or its homologs
CbpA or DjlA (Castanié-Cornet et al. 2014). As shown in Fig. 5,
these genes are widely distributed and show high redundancy in
model-degrading bacteria. Five copies of the DnaK encoding gene
are present in the genome of P. xenovorans, and 10 copies are in
the R. jostii genome, both remarkable PCB-degrading bacteria. In
these strains, the groES, groEL, and dnaJ genes also exhibit higher
redundancy compared with nondegrading bacteria, whereas the
dnaJ gene homologs cbpA and djIA genes are absent in these
degrading strains. Interestingly, DnaK, GroEL, and GrokS are
commonly induced during aromatic compounds degradation
in P. xenovorans LB400 (Agull6 et al. 2007, 2017, Martinez et al.
2007, Méndez 2017, Rodriguez-Castro et al. 2024). DnaK is a
redox-sensitive chaperone with a crucial protective role during
oxidative stress (Winter et al. 2005).

GrpE is a nucleotide exchange factor in the DnaK/DnaJ sys-
tem, playing an important role in regulating the activity of the
DnaK/DnaJ system in response to thermal stress (Groemping and
Reinstein 2001). The grpE gene is in a single copy in all the ana-
lyzed bacterial strains except for R. jostii (three copies). Together
with the DnaK/DnaJ/GrpE system, ClpB is an ATP-dependent heat
shock protein that plays an essential role in rescuing damaged
proteins from large aggregates (Barnett et al. 2000, Lee et al. 2003).
As shown in Fig. 5(B), a single copy of the clpB gene is present in all
bacterial strains. ClpB is induced in P. xenovorans strain LB400 by
the aromatic compound p-cymene (Agullé et al. 2017), which may
have the function of assisting damaged proteins generated upon
p-cymene exposure.

The GroEL and GroES chaperones promote folding of almost
250 proteins in E. coli, representing 10%-15% of its total cytoso-
lic proteins (Kerner et al. 2005). As shown in Fig. 5(B), both groEL
and groES genes are present in five copies in P. xenovorans. In con-
trast, in most genomes, these genes are in a single copy. Multiple
gene copies of these key chaperones may be part of the adaptive
strategy of P. xenovorans against different stressful conditions.

HtpG is a chaperone foldase that promotes the folding and ac-
tivation of newly synthesized proteins, prevents aggregation, and
facilitates disaggregation and refolding of misfolded and aggre-
gated proteins. The HtpG chaperone is upregulated under oxida-
tive stress and is involved in bacterial swarming, biofilm forma-
tion, cell division, and pathogenicity (Genest et al. 2019, Wickner
et al. 2021). This study indicates that the htpG gene is present
in all bacterial strains as a singleton (Fig. 5B). Interestingly, the
HtpG chaperone is induced in P. xenovorans by 4-chlorobenzoate
(Martinez et al. 2007), suggesting a relevant role in cell protection
during degradation of aromatic compounds.

The redox-sensitive methionine sulfoxide reductases (Msr) are
thioredoxin (Trx)-dependent oxidoreductase enzymes that repair
oxidized proteins at methionine (Met-O) residues, participating in
the refolding and recovery of proteins damaged during oxidative
stress (Boschi-Muller 2018). Up to three copies of the msr genes are
present in P. xenovorans and other degrading bacteria (Fig. 5B).

Finally, the TF is the only bacterial chaperone that binds to ri-
bosomes. TF is transiently associated with ribosomes in a 1:1 sto-
ichiometry, binding to and acting on nascent polypeptides emerg-
ing from the ribosome (Rutkowska et al. 2008). Approximately 70%
of proteins fold to their native structures after association with
the TF. Hence, its copy number is expected to be conserved in all
bacterial genomes (Fig. 5B).

In summary, classical chaperones are widely distributed in bac-
teria and shown to be one of the strategies most used by P. xen-
ovorans and degrading bacteria to cope with the stress generated
by the presence of aromatic compounds. A higher redundancy of
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genes encoding GroEL, GroES, DnakK, DnaJ, and MsrA chaperones
is present in the model-degrading bacteria P. xenovorans and R.
jostii, compared with enteric bacteria (nondegrading). Accordingly,
these are also the most upregulated chaperones during aromatic
metabolism in the model-degrading bacteria P. xenovorans and P.
putida (Segura et al. 2005, Denef et al. 2006, Dominguez-Cuevas et
al. 2006, Martinez et al. 2007, Agullé et al. 2017).

Stress response chaperones

Holdase chaperones

Environmental stress can lead to the accumulation of ROS, a de-
crease in ATP intracellular levels, and the enzymatic activity of
ATP-dependent chaperones. Therefore, ATP-independent holdase
chaperones are induced as a strategy to cope with these stress-
ful conditions and prevent protein aggregation (Hoffmann et al.
2004, Thoma et al. 2015, Goemans et al. 2018). These molecular
chaperones are regulated at the transcriptional and/or posttrans-
lational level under stress, which allows them to respond rapidly
and protect the integrity of the bacterial proteome (Voth and Jakob
2017). Holdase chaperones form a stable complex with damaged
proteins, preventing their irreversible aggregation while the stress
persists. Once the unfavorable condition subsides, the chaperones
return to their inactive state and release the bound protein, which
then folds itself. Although holdase chaperones lack refolding ac-
tivity, this mechanism provides a means to prevent the accumu-
lation of misfolded proteins and to protect the cells against the
toxicity associated with protein misfolding. Chaperones that are
generally involved in stress responses include the heat shock pro-
teins RidA, SlyD, SplA, CnoX, and Hsp. RidA is part of a reversible
redox mechanism, possessing a regular function in the absence of
stress. Under nonstress conditions, RidA functions as a deaminase
by releasing ammonia from reactive enamine/imine intermedi-
ates (Lambrecht et al. 2012). In the presence of reactive chlorine
species, RidA chlorinates positively charged amino acids, prevent-
ing aggregation of misfolding substrates (Voth and Jakob 2017).
The ridA gene is highly redundant in most strains, reaching up to
12 copies in P. xenovorans LB40O0 (Fig. 5B), which may have a key role
during oxidative stress generated by the catabolism of PCBs and
chlorinated aromatic compounds. A higher redundancy of ridA is
evident in model-degrading bacteria (9-12 copies) compared to
nondegrading enteric bacteria (3-9 copies), suggesting the phys-
iological relevance of RidA on protein homeostasis under stress
related to biodegradation.

Another chaperone widely distributed among bacteria is SlyD,
a member of the peptidyl-prolyl isomerase (PPlase) family (Quist-
gaard et al. 2016). SlyD is structurally composed of the PPlase do-
main that catalyzes peptidyl-prolyl cis-trans isomerization, accel-
erating the slow steps in protein folding, while the C-terminal do-
main performs chaperone activity (IF; insert-in-flap), which pre-
vents aggregation of cytosolic proteins (Kim et al. 2010). Interest-
ingly, the slyD gene is present only in enteric bacteria but absent in
all analyzed degrading bacteria (Fig. 5B). SIpA, the SlyD-like pro-
tein A, is an FKBP-type peptidyl-prolyl cis-trans isomerase, but un-
like SlyD, it lacks the C-terminal metal-binding region (Hottenrott
etal. 1997, Low et al. 2010). SIpA possesses moderate PPlase activ-
ity, significantly weaker than SlyD (Hottenrott et al. 1997, Geitner
et al. 2017). In contrast to SlyD, the chaperone SlpA is highly sta-
ble under hostile cellular conditions (Geitner et al. 2017), which
is relevant for proteostasis under stress. Two slpA gene copies
are present in P. xenovorans and all model-degrading bacteria, ex-
cept for R. jostii (no copies) and enteric bacteria (one copy). A
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PpiB protein with PPlase activity has been described in B. pseu-
domallei (Bzdyl et al. 2019). Deletion of ppiB leads to pleiotropic
effects, including increased sensitivity toward multiple antibi-
otics and the loss of several virulence determinants (Bzdyl et al.
2019), revealing its essential role in proteome homeostasis and
virulence.

During oxidative stress, cysteine and methionine residues of
proteins can be oxidized, leading to protein inactivation or mis-
folding. Therefore, oxidoreductases also contribute to proteosta-
sis by rescuing redox-sensitive residues from oxidation (Dahl et
al. 2015). CnoX (YbbN) oxidoreductase is a multidomain protein
with a dual function that prevents irreversible protein aggrega-
tion and protects cellular proteins from hyperoxidation. Upon
stress, it transfers its substrates to DnaK/DnaJ/E and GroEL/GroES
for refolding (Meireles et al. 2024). CnoX is the only known
holdase directly cooperating with the essential GroEL/GroES com-
plex and is involved in the response to oxidative stress in-
duced by hypochlorous acid (HOCI) (Goemans et al. 2018), hy-
drogen peroxide (Mufloz-Villagran et al. 2024), and heat stress
(Izquierdo-Fiallo et al. 2023). Interestingly, the Burkholderiales
strains P. xenovorans and C. metallidurans harbor three copies of
the cnoX gene, whereas nondegrading bacteria have only one copy
(Fig. 5B). The aerobic metabolism of aromatic compounds gener-
ates ROS that may induce oxidative stress. The presence of mul-
tiple copies of the chaperedoxin CnoX-encoding gene could con-
tribute to achieving an increased intracellular concentration of
CnoX, thereby enhancing the protection of its target proteins or in-
creasing the number of substrate proteins to be protected by this
chaperedoxin when bacteria are in contact with aromatic com-
pounds.

Small heat shock proteins

The small heat shock proteins (sHsps) are low-molecular-weight
holdase chaperones, ranging from 12 to 43 kDa, initially described
as heat shock proteins (Jacob et al. 2017). They protect against
stressful environmental conditions in prokaryotic and eukaryotic
cells (Maleki et al. 2016, Jacob et al. 2017). Most studied sHsps in
prokaryotes include Hsp20, Hsp31, Hsp33, and Spy (Kumsta and
Jakob 2009, Singh et al. 2014, Aslam and Hazbun 2016, He et al.
2021).

The chaperones Hsp33 and Hsp31 play a major role in the ox-
idative stress response in E. coli, preventing protein aggregation
(Voth and Jakob 2017). In E. coli, Hsp33 is activated during ox-
idative stress through the formation of two intramolecular disul-
fide bonds, the release of the bound zinc, and conformational re-
arrangements (Reichmann et al. 2018). In the absence of stress,
Hsp33 is compactly folded, four cysteines of the C-terminal are
reduced, and zinc is bound (Reichmann et al. 2018). Hsp31 is also
involved in acid stress (Mujacic et al. 2004). The hsp33 and hsp31
genes are present as a single copy in the genomes of P. xenovorans
and most of the model-degrading bacteria (Fig. 5B).

The Hsp20 chaperone, known as IbpA and IbpB in E. coli, is
constitutively active and forms stable complexes with its sub-
strates under stress conditions. Escherichia coli IbpA and IbpB co-
operate to stabilize intermediate states of denatured proteins,
thus promoting the efficiency of the disaggregating mechanisms
DnaK/DnaJ/GrpE and ClpB (Ratajczak et al. 2009) and helping to
maintain the activity of several enzymes during stress conditions
induced by ROS, heat, and freeze-thaw (Kitagawa et al. 2002).
Hsp20 suppresses protein aggregation at elevated temperatures
in Deinococcus radiodurans (Bepperling et al. 2012). In E. coli, the ex-
pression of hsp20 is controlled by RpoS or RpoH, which are master

regulators of general stress responses and heat shock, respectively
(Tilly et al. 1986, Cocotl-Yafiez et al. 2014). In A. vinelandii, Hsp20 is
also involved in desiccation resistance (Cocotl-Yafiez et al. 2014).
Hsp20-encoding genes are widely distributed and highly redun-
dant in model-degrading bacteria, including P. xenovorans, with a
maximum of 12 copies (Fig. 5B). The high redundancy of hsp20 in
degrading bacteria suggests that this holdase chaperone plays a
pivotal role in protein protection and cell proteostasis under dif-
ferent stress conditions, including abiotic factors.

Membrane/periplasmic chaperones or proteases

In bacteria, the proteostasis of the membrane proteins is carried
out by periplasmic or membrane chaperones and proteases, such
as HtrA, SurA, Skp, YidC, and FtsH. HtrA (also known as protease
Do or DegP) is present in all three domains of life, usually encoded
by multiple gene copies (Muley et al. 2019). This protein has a
dual activity, acting as a protease and chaperone in the periplasm.
However, since the ATP is not available in the periplasm, it is
presumed that HtrA could act as an ATP-independent chaperone
(Zarzecka et al. 2019). HtrA activity is essential for bacterial sur-
vival in stressful environments, contributing to tolerating harsh
conditions such as increased oxidative stress, osmotic stress, high
temperatures, or extreme pH (Zarzecka et al. 2019). According to
the results of this study, the protease/chaperone HtrA is encoded
in the genome of all the analyzed bacterial strains, showing two
copies in P. xenovorans and a maximum of five copies in R. jostii.
Multiple copies of htrA may guarantee the protection and func-
tionality of proteins (Fig. 5B).

SurA is a holdase chaperone essential for cell survival; spe-
cialized in the transport of unfolded proteins from the inner to
the outer membrane of Gram-negative bacteria, and also in the
periplasm under stress conditions (Mas et al. 2019). SurA mediates
the folding of proteins translocated to the periplasm, combining
both peptidyl propyl isomerase and chaperone functions. A mul-
tiple copy number of surA is present in the genome of Burkholde-
riales strains (three and four copies in P. xenovorans and C. metal-
lidurans, respectively), suggesting that SurA may play a crucial role
in the protection of periplasmic proteins under different types of
stress in degrading bacteria.

YidC is a transmembrane protein that is involved in the inser-
tion of membrane proteins into the lipid bilayer in bacteria un-
der stressful conditions, acting as a holdase chaperone by interac-
tion with hydrophobic domains of damaged or unfolded proteins,
therefore, its absence results in the accumulation of aggregated
or misfolded proteins in the cytoplasm and the inner membrane
(Zzhu et al. 2013). YidC functions as a ribosome receptor that di-
rectly accepts membrane proteins for their subsequent insertion
(Dalbey et al. 2014). Figure 5(B) shows that all bacterial genomes
possess one copy of the yidC gene.

Finally, FtsH is a highly conserved zinc-dependent metallo-
protease located in the inner membrane that belongs to the
AAA+ type ATPase family. Escherichia coli FtsH is the best-studied
of all known members and is the only protease essential for
growth and survival in bacteria. FtsH is involved in the quality
control of specific membrane proteins (Akiyama 2009) and plays
an important role during protein aggregation under heat shock
conditions (Langklotz et al. 2012). Paraburkholderia xenovorans pos-
sesses two copies of the ftsH genes (Fig. 5B).

The multiple gene copies present in P. xenovorans reflect a spe-
cific adaptation for survival to satisfy the requirements of folding,
protection, and recycling of proteins in the periplasm and extra-
cellular matrix.
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Proteolytic ATPase complexes (AAA+)

The AAA+ proteins are ATPases associated with various cellular
activities that contain a conserved ATP-binding domain (Hanson
and Whiteheart 2005). The AAA+-containing proteolytic complex
includes the well-known CIpAP, ClpCP, and ClpXP proteases, as
well as the Lon protease. Clp proteins comprise the catalytic and
substrate recognition subunits. For example, the protease CIpAP
consists of the catalytic ClpP and the recognition of ClpA subunits
(Kim et al. 2022). These proteases are composed of rings of several
subunits that form a cavity, where the target protein is degraded.
The Clp complex recognizes specific hydrophobic regions of mis-
folded or unfolded proteins to prevent their aggregation in the cy-
toplasm. ClpA, ClpC, and ClpX recognition subunits can also work
alone as ATP-independent chaperones, thus constituting key reg-
ulatory components of the serine protease ClpP since they can
rescue and fold proteins or present them to catalytic subunits for
further degradation (LaBreck et al. 2017). These systems have an
important role in the degradation of proteins and the recycling
of their components. Genes of the AAA+ Clp protease complexes
are present in all bacterial strains except the clpC gene (Fig. 5).
While the clpP, clpX, and clpA genes are widespread, the clpC gene
is present only in the Actinomycetota R. jostii. This agrees with a
previous report in which clpC was detected only in Bacillota and
Actinomycetota phyla (Nishimura and van Wijk 2015). ClpX uses
multivalent strategies to discriminate between substrates that are
in their native conformations or that are unfolded (LaBreck et al.
2017). Therefore, when the correct folding of their substrate pro-
teins is not achieved, a specific signal is recognized that directs
them to the ClpP protease for degradation. In E. coli, CIpXP is asso-
ciated with protein aggregates (LaBreck et al. 2017). The clpP gene
is present in two copies in P. xenovorans and in one to four copies
in other bacteria (Fig. 5B).

Lon (La) is an ATP-dependent protease that degrades abnor-
mal proteins or proteins that are no longer necessary for the cell
(Simmons et al. 2008). In E. coli, this protease is responsible for
70%-80% of proteolysis in the cytosol (Maurizi 1992) and is re-
quired to maintain homeostasis and cell survival under stressful
conditions. In bacteria, Lon plays a role in processes like motil-
ity, DNA replication, sporulation, and pathogenicity (Fu et al. 1997,
Izquierdo-Fiallo et al. 2023). Additionally, Lon protease activity has
been reported to increase resistance to harsh conditions such as
nutrient starvation, oxidative stress, bacteriophage lysogeny, ther-
mal stress, osmotic stress, and radiation (Fu et al. 1997, Takaya et
al. 2003, Xie et al. 2016, Figaj et al. 2020). As shown in Fig. 5(B), P.
xenovorans and most strains contain from two to three copies; in
contrast, A. evansii and R. jostii possess a single copy. These genes
that encode proteases are widely distributed, and there is a redun-
dancy of ClpP and Lon that may be indicative of the importance
of proteolytic degradation in the turnover of proteins.

Overall, a remarkable feature of degrading bacteria is the re-
dundancy of genes for specific chaperone systems, especially the
classical and stress response chaperones. Particularly P. xenovorans
has a high redundancy (>3 copies) of the groEL, groES, dnak, hsp20,
ridA, msrA, surA, and cnoX genes, which may represent an adap-
tive strategy to protect proteins from aggregation under oxida-
tive stress conditions. The msrA gene was found in three copies in
the Burkholderiales strains. The 12 copies of hsp20 and ridA genes
found in P. xenovorans were nonidentical and present in different
genetic contexts, suggesting their functional differentiation that
could significantly contribute to a higher flexibility of responses
to different environmental challenges. In this context, we pro-
pose that holdases Hsp20 and RidA may be relevant to coping

Méndezetal. | 15

with stress. Moreover, the presence of different protein variants,
such as those detected for MsrA and ClpPX, may confer additional
adaptive responses through the proteostasis network. The model
for the proteostasis network in P. xenovorans of the Burkholderi-
ales order is shown in Fig. 6. The interaction of molecular chap-
erones with unfolded and aggregated proteins generated during
stress within the cell and the inner membrane is indicated, along
with the gene copy number in P. xenovorans. These findings pro-
vide novel insights into the diversity and abundance of genes re-
lated to the proteostasis network in P. xenovorans LB400 and other
members of the Burkholderiales order and offer new perspectives
about the functionality and relevance of these chaperone sys-
tems to thrive in challenging environments. The multiple gene
copies observed may be paralogous due to duplication events oc-
curring before or after speciation (Chain et al. 2006). In addition,
horizontal transfer of orthologous genes and genomic islands has
been described in P. xenovorans LB400 and other members of the
Burkholderiales order (Chain et al. 2006, Pérez-Pantoja et al. 2012).
This leads to a variety of evolutionary scenarios that have ulti-
mately shaped the multicopy patterns observed. The underlying
mechanisms that led to this multicopy scenario in degrading bac-
teria require further investigation.

Membrane, morphology, and lifestyle
adaptations to aromatic compounds

Aromatic compounds cause changes in the membrane of bacte-
rial cells, affecting their viability and fitness (Sikkema et al. 1995,
Schweigert et al. 2001, Camara et al. 2004). The toxic effect pro-
duced in bacteria by aromatic compounds and hydrocarbons is re-
lated to their accumulation in the cytoplasmic membrane (Heip-
ieper and Martinez 2010). Solvents with a logP between 1 and 4,
such as monocyclic aromatic compounds and phenols, are gen-
erally toxic to cells (Cdmara et al. 2004, Heipieper and Martinez
2010). Compounds with extremely low solubility (e.g. high molec-
ular PAHs) are not bioavailable enough to produce toxic effects on
the membranes (Weber et al. 1994, Cdmara et al. 2004, Heipieper
and Martinez 2010). Due to their lipophilic nature, aromatic com-
pounds tend to arrange between the phospholipid chains, pro-
ducing an expansion of the cytoplasmic membrane that leads to
a nonselective permeability to ions. The protons in their gradi-
ent dissipate, reducing their proton driving force and inhibiting
the respiratory enzymes (Sikkema et al. 1992, Weber and de Bont
1996).

Paraburkholderia xenovorans LB400 incubation with the aromatic
compounds 4-chlorobiphenyl, biphenyl, p-cymene, and p-cumate
induces fuzzy outer and inner membranes and an increased
periplasm (Agull6 et al. 2007, 2017). Dihydroxybiphenyl is highly
toxic for P. xenovorans and other bacteria, drastically reducing their
viability (Camara et al. 2004). The main target of PCBs and their di-
hydroxylated metabolites is the cytoplasmic membrane (Sikkema
et al. 1995, Camara et al. 2004). Dihydroxylated aromatic metabo-
lites are hydrophobic and weakly acidic and may be uncouplers
by a protonophoric shuttle mechanism (Schweigert et al. 2001).
Cell membrane damage in bacteria is evidenced by inhibition of
growth and an increased accumulation of lipids. However, the ad-
dition of the antioxidant a-tocopherol improves cell integrity and
membranes upon exposure to 4-chlorobiphenyl (Ponce et al. 2011).
This suggests that a-tocopherol may be exerting a protective ef-
fect on maintaining cell integrity.

The homeoviscous adaptation is a mechanism that modifies
the permeability of the membrane to optimize growth and min-
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Figure 6. Schematic representation of the predicted proteostasis network in P. xenovorans. Newly synthesized proteins emerge from the ribosome and
are assisted by trigger factor (TF) and chaperone systems such as DnaK/J, GrpE, and GroEL/ES for proper folding. Unfolded proteins are managed by a
network of chaperones and proteases that mediate refolding or degradation. Numbers next to each factor correspond to the number of copies

identified in the genome of P. xenovorans. Created in https://BioRender.com.

imize energy expenditure (de Mendoza and Pilon 2019). Bacteria
decrease the fluidity of the cytoplasmic membrane upon expo-
sure to high concentrations of toxic organic compounds such as
aromatic molecules (Heipieper and de Bont 1994, Camara et al.
2004). The activation of the oxidative stress response along with
fatty acid metabolism and changes in membrane lipid composi-
tion have been associated with the catabolism of aromatic com-
pounds in bacteria (Denef et al. 2005, Navarro-Llorens et al. 2005,
Mrozik et al. 2006, Patrauchan et al. 2008). Physiological adapta-
tions protect bacteria during the metabolism of aromatic com-
pounds.

Adaptation mechanisms of bacterial membranes to aromatic
compounds and other toxic molecules include: (i) modification
of the saturation of fatty acids in membrane phospholipids,
(ii) fast cis-trans isomerization of unsaturated fatty acids, (iii)
changes in the polar group of phospholipids, (iv) changes in cyclo-
propane and branched fatty acids, and (v) release of outer mem-
brane vesicles from the cell surface (Eberlein et al. 2018, Der-
cové et al. 2019). However, in the Paraburkholderia genus, studies of
membrane adaptation mechanisms to aromatic compounds are
scarce.

Modification of the saturation of fatty acids

The saturation of fatty acids in the membrane may be the main
adaptive mechanism in bacteria exposed to aromatic compounds,
compensating for the elevation of permeability induced by these

molecules (Heipieper et al. 1992). In Pseudomonas, two fatty acyl
desaturases (DesA and DesB) play a role in the unsaturation
of fatty acids in the membrane, adding a cis double bond to
fatty acids (Zhang and Rock 2008). DesA desaturates acyl-CoAs
of membrane phospholipids, whereas DesB adds a double bond
to acyl-CoAs derived from exogenous fatty acids. Fatty acyl desat-
urases are regulated by the presence of organic compounds, tem-
perature, and other environmental conditions (Zhang and Rock
2008).

The whole-cell fatty acid profile of P. xenovorans LB400 is com-
posed of 14:0 (4.7%), 14:0 30H (8.5%), 16:1 7¢ (19.1%), 16:0 (18.2%),
17:0 cyclo (5.1%), 16:1 20H (2.2%), 16:0 20H (2.2%), 16:0 30H (7.1%),
18:1 7¢ (27.3%), 18:0 (0.5%), 19:0 cyclo 8c (3.6%), and 18:1 20H
(0.9%) as main components (Goris et al. 2004). Paraburkholderia
xenovorans LB400 cells decreased unsaturated fatty acid ratios,
predominantly 18:1 and 16:1, when cells are grown on biphenyl
or benzoate compared with succinate-grown cells (Parnell et al.
2006).

On the other hand, in P. xenovorans LB400 cells incubated with
PCBs, the presence of biphenyl counteracts the effects of PCBs,
elevating unsaturated fatty acids, with an increase in unsatu-
rated phosphatidyl ethanolamine but a decrease in unsaturated
phosphatidylcholine, which is a minor membrane component
(Zoraddova-Murinova et al. 2012). In contrast, membrane lipid sat-
uration increases in the presence of carvone and terpenes of or-
ange peel. The presence of biphenyl in a Stutzerimonas stutzeri
culture incubated with PCBs increases membrane unsaturated
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fatty acids, including unsaturated phosphatidyl ethanolamine
and phosphatidylcholine (Zorddova-Murinova et al. 2012). Incu-
bation with phenol of P. putida P8 elevates the saturation degree
of membrane fatty acids, decreasing the membrane permeabil-
ity (Heipieper et al. 1992). Naphthalene increases the saturation
degree of membrane fatty acids of S. stutzeri and Pseudomonas sp.
JS150; in contrast, naphthalene decreases the saturation of mem-
brane fatty acids in P. veronii. (Heipieper et al. 1992, Mrozik et al.
2006).

Fatty acid cis-trans isomerization

In bacteria, a fast isomerization of cis—into trans-unsaturated fatty
acids catalyzed by a cis-trans isomerase (Cti) leads to a rigidifi-
cation of the membrane, decreasing the permeability of organic
compounds that may intercalate and destabilize the membrane
(Heipieper et al. 1992, 2003). Fatty acid cis-trans isomerization is
an adaptation mechanism influenced by the concentration and
hydrophobicity of the organic compounds, which occur in situ and
do not require de novo synthesis of fatty acids (Eberlein et al. 2018,
Dercova et al. 2019). The trans-unsaturated fatty acids cannot be
converted into cis-unsaturated fatty acids by Cti; therefore, de novo
biosynthesis of cis-unsaturated fatty acids is required (Zhang and
Rock 2008).

In P. xenovorans, incubation with PCBs induces trans configura-
tion of unsaturated fatty acids, whereas the addition of biphenyl,

limonene, and the terpenes from orange peels to cells incubated
with PCBs decreases trans unsaturated fatty acids (Zoréddovéa-
Murinova et al. 2012). Pseudomonas putida strains cultured in or-
ganic solvents, for example, toluene, increase the trans config-
uration of unsaturated fatty acids, while the cyclic and satu-
rated fatty acids are not significantly modified (Dercova et al.
2019).

Changes in the polar group composition

The composition of phospholipid polar head groups in the mem-
brane is regulated by enzymes to balance the proportion of
zwitterionic phospholipids (e.g. phosphatidylethanolamine, phos-
phatidylcholine, and glucosyldiacylglycerol) and acidic phospho-
lipids (e.g. phosphatidylglycerol and cardiolipin) (Zhang and Rock
2008). These enzymes are intrinsic membrane proteins or pro-
teins associated with the membrane. Cytosine diphosphate-
diacylglycerol is a central intermediate in phospholipid synthe-
sis thatis formed by cytidine diphosphate diacylglycerol synthase
(CdsA) from phosphatidic acid and cytosine triphosphate (Zhang
and Rock 2008).

Aromatic solvents such as benzene and toluene reduce
the transition temperature of phospholipids from a more or-
dered gel-lamellar phase to a less structured liquid-crystalline
phase. To stabilize the fluidity in response to aromatic com-
pounds, bacteria modify the membrane composition according
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to phospholipids with more suitable polar groups, favoring acidic
phospholipids.

Stutzerimonas stutzeri and P. veronii cells grown on PCBs in-
crease phosphatidylglycerol and phosphatidylcholine compared
to glucose-grown cells, decreasing phosphatidylethanolamine
(Murinova et al. 2014, Dercova et al. 2019). In P. xenovorans incu-
bated with PCBs, the addition of biphenyl counteracts the effects
of PCBs, increasing phosphatidylethanolamine and phosphatidyl-
choline and decreasing acidic phospholipids (Zoradova-Murinova
etal. 2012).In S. stutzeri incubated with PCBs, the presence of natu-
ral terpenes from ivy leaves increases phosphatidylethanolamine
and phosphatidylcholine (Zorddova-Murinova et al. 2012). Incuba-
tion of P. putida with phenol or toluene causes a decrease in the un-
saturated/saturated ratio of membrane fatty acids, a cis-trans iso-
merization, and modifications in phospholipids, increasing phos-
phatidylglycerol and cardiolipin (diphosphatidylglycerol) and de-
creasing phosphatidylethanolamine (Weber et al. 1994, Weber and
de Bont 1996). Stutzerimonas stutzeri and P. veronii cells grown on
3-chlorobenzoate compared to glucose-grown cells reduce phos-
phatidylethanolamine (Dercova et al. 2019).

Changes in cyclopropane and branched fatty
acids

Formation of cyclopropane fatty acids in Gram-negative bacteria
have effects on transition temperature, comparable to the branch-
ing of fatty acids (anteiso/iso branching) in Gram-positive cells
(Dercové et al. 2019). The cyclopropane group is formed through
methylation of cis-unsaturated fatty acids by cyclopropane fatty
acid synthase (Cfa), using S-adenosylmethionine as a methyl
donor. Due to their steric properties, cyclopropyl fatty acids mimic
cis-unsaturated fatty acids in the membrane, conferring an addi-
tional resistance mechanism to organic solvents and acid stress
(Zhang and Rock 2008, Pini et al. 2009, Zoradova-Murinova et al.
2012).

Paraburkholderia xenovorans LB400 cells increased cyclopropyl
fatty acids (C17 and C19) during incubation with biphenyl and
benzoate compared with succinate-grown cells (Parnell et al.
2006). The degradation of PCBs also increased cyclopropyl fatty
acids in P. xenovorans cells (Parnell et al. 2006). In P. xenovorans
LB400 cells incubated with PCBs, the presence of biphenyl and
limonene slightly increases the C17-cyclopropyl fatty acid con-
tent in the membrane, whereas the presence of biphenyl and ivy
leaf terpenes increases the C19-cyclopropyl fatty acid content in
membrane lipids (Zorddova-Murinova et al. 2012).

In Pseudomonas studies, a P. putida strain lacking the cfaB gene,
encoding the synthesis of cyclopropane fatty acids, shows in-
creased sensitivity to organic solvents, but not to other stressful
conditions such as the presence of antibiotics, heavy metals, or
temperature changes (Pini et al. 2009).

Release of outer membrane vesicles

Release of outer membrane vesicles (OMVs) from the cell surface
leads to a rapid increase in hydrophobicity, while cell aggregates
and biofilm formation decrease the contact surface with toxic
compounds (Eberlein et al. 2018). Vesicle formation in bacteria
plays a key role against multiple stressors such as organic sol-
vents (Baumgarten et al. 2012).

In P. xenovorans LB400, after incubation of succinate-grown cells
with PCBs, vesicle formation was observed in a 3:4 ratio (vesi-
cle/cell) (Parnell et al. 2006). Burkholderia multivorans C1576 in
biofilms releases OMVs, which are enriched with lytic enzymes,
siderophores, and antioxidant enzymes (Teran et al. 2020). The ex-

posure of P. putida KT2440 to short- and long-chained n-alkanols
revealed an up to 4-fold increase in OMV production (Eberlein et
al. 2018).

Lipopolysaccharide modifications

Due to the structural differences in the external cell membrane
between Gram-negative and Gram-positive bacteria, different tol-
erances to solvents and toxic compounds have been observed
(Harrop et al. 1989). Gram-negative bacteria showed a higher toler-
ance than most Gram-positive bacteria to a mixture of hydrocar-
bons, including saturated hydrocarbons (n-hexane, n-hexadecane,
and cyclohexane), monoaromatic compounds (benzene, toluene,
and ethylbenzene), and polyaromatic compounds (naphthalene,
2-methylnaphthalene, and fluorene) (Marilena-Lazaroaie 2010).
However, a specific taxon of Gram-positive bacteria called My-
colata (Rhodococcus, Mycobacterium, Nocardia, Corynebacterium, Gor-
donia, Dietzia, Skermania, and Tsukamurella) is extremely resistant
to toxic hydrophobic compounds (Murinovéa and Dercova 2014,
Méndez et al. 2022b). The cell wall has a unique composition,
with a main component, arabinogalactan polysaccharide, which
is linked with large 2-alkyl 3-hydroxy branched-chain fatty acids
called mycolic acids. This complex is responsible for cell surface
hydrophobicity and its very low permeability.

Gram-negative bacteria have lipopolysaccharides (LPS) as a
main component of their external wall, constituted by a lipid
fraction with saturated fatty acids and characteristic oligosaccha-
rides and polysaccharides. Due to its high hydrophobicity, LPS of
the cell wall confers Gram-negative bacteria a lower sensitivity
to aromatic compounds such as PCBs, biphenyl, toluene, or ben-
zene (Inoue et al. 1991, Weber and de Bont 1996, Murinova et al.
2014). The presence of the specific cations Mg?* and Ca?* pro-
motes hexagonal phase formation by anionic phospholipids, in-
creasing cell survival in the presence of toluene (Inoue et al. 1991,
Weber and de Bont 1996). LPS-altered mutants or chemical loss
of part of the LPS decreases the cellular protection to hydropho-
bic antibiotics and detergents in E. coli and S. enterica serovar Ty-
phimurium (Hancock 1984, Harrop et al. 1989, Weber and de Bont
1996). However, the exclusion of the O-antigen from the molecule
has no significant implication in tolerance to toluene, octanol, p-
xylene, propylbenzene, and heptane compared to the wild strain
(Junker et al. 2001, Ramos et al. 2002). In P. putida strain Idaho, a
modification in the molecular pattern of the LPS on cells grown
on o-xylene was observed, decreasing the molecular mass of LPS
(Pinkart et al. 1996).

Cell morphology modifications

The modification of cell shape and size is a mechanism of cellu-
lar resistance to the catabolism of aromatic compounds in Gram-
negative and Gram-positive bacteria. A change in the elongated
shape of bacillary bacteria to more coccoidal forms has been ob-
served in P. putida P8 grown on phenol and 4-chlorophenol and
Rhodococcus cells grown on p-cresol and o-cresol (Neumann et al.
2005, Gerginova et al. 2023). The coccoidal cells showed a decrease
in the relative surface area of the cell in contact with the sol-
vent, decreasing the toxic effects on its membrane. The scarcity
of nutrients such as nitrogen, phosphorus, or water, as well as the
presence of aromatic compounds as the only carbon and energy
source, results in cell size modification, changing rod-shaped cells
to coccal or filamentous forms (Seeger and Jerez 1993a, Gerginova
et al. 2023). Gordonia sp. 12/5 grown on monophenols shows struc-
tural changes in cell populations, decreasing their average cell
lengths compared to cells grown on glucose (Gerginova et al. 2023).
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In contrast, Acidithiobacillus ferrooxidans during phosphate starva-
tion increases the size of cells 10-fold and induces diverse pro-
teins, including an outer membrane porin (Seeger and Jerez 1993a,
b). The same effect has been reported for B. cenocepacia during
adaptation to chronic infection, in which a progressive decrease
in cell length and conversion from rod to cocci form was observed
(Hassan et al. 2019).

Bacterial cell lifestyle modifications

Biofilm formation in bacteria is mediated by the second mes-
senger bis-(3'-5")-cyclic dimeric guanosine monophosphate (c-di-
GMP) (Jenal et al. 2017). Diverse environmental stressful condi-
tions (e.g. aromatic compounds, oxidative stress, nutrient scarcity,
heavy metals, and antimicrobials) in bacterial cells change in-
tracellular levels of c-di-GMP, which is sensed by effectors that
activate a stress response (Alviz-Gazitua et al. 2019, Wang et al.
2023). Potential stress responses are biofilm formation, activation
of oxidative stress response, stimulation of antimicrobial or heavy
metal resistance, PHA degradation, and regulation of catabolic
genes.

A significant decrease in biofilm formation in P. xenovorans
has been observed during growth on the aromatic compound p-
cymene compared to glucose-grown cells (Agull6 et al. 2017). Pro-
teomic analysis of P. xenovorans cells during growth on p-cymene
showed a stress response and the downregulation of the diguany-
late cyclase gene-encoded protein (BxeB2035). The decrease in
diguanylate cyclase correlates with an increase in the MotB pro-
tein, which is associated with the flagellar motor and cell motil-
ity. Stress also reduced biofilm levels in C. metallidurans CH34, a
member of the Burkholderiales order. In response to cadmium, the
aromatic-degrading strain C. metallidurans CH34 inhibits the initi-
ation of a biofilm lifestyle that involves a decrease in c-di-GMP
levels, mediated by a novel metal-regulated phosphodiesterase
(mrp gene), which is upregulated in the presence of cadmium.
This study established a key connection between the adaptation
to heavy metals and a second messenger, which is involved in
bacterial lifestyle and many other processes, including electricity
production (Alviz-Gazitua et al. 2019, 2022). In contrast, toluene
caused in P. putida KT2440 a downregulation of the genes en-
coding proteins involved in flagellar biosynthesis (FIgE and Hag)
(Dominguez-Cuevas et al. 2006).

Accelerated degradation of aromatic
compounds by stress-adapted bacteria

To establish optimized biodegradation for aromatic compounds,
itis crucial to maintain the fitness of the cells subjected to stress-
ful conditions and to overcome dead-end steps in the catabolic
process to avoid the accumulation of toxic metabolites. Mainte-
nance of redox balance within the cell through biotechnological
strategies can counteract the oxidative stress generated during
aromatic metabolism.

Notably, Ponce et al. (2011) showed that antioxidant com-
pounds such as «-tocopherol stimulate degradation of PCBs
by P. xenovorans in polluted water and soil. In presence of a-
tocopherol, growth and cell integrity of P. xenovorans exposed to
4-chlorobiphenyl is less affected, which suggests a protective ef-
fect of the antioxidant molecule on the cell membranes (Ponce
et al. 2011). Recent studies showed that the overexpression of
the long-chain flavodoxin F1dX1 improves P. xenovorans degrada-
tion of aromatic compounds. Proteomic analysis showed a de-
creased oxidative stress response in FldX1-overexpressing cells
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(Rodriguez-Castro et al. 2019, 2024). Increased growth and degra-
dation of 4-hydroxyphenylacetate by P. xenovorans recombinant
cells compared with the control strain were observed (Rodriguez-
Castro et al. 2024). Moreover, 4-hydroxyphenylacetate was com-
pletely degraded after 3 days in soils bicaugmented with the
recombinant P. xenovorans strain (Rodriguez-Castro et al. 2024).
These results suggest that counteracting stress response may
enhance the biodegradation of other aromatic and toxic com-
pounds. For example, metabolic engineering successfully over-
came a metabolic dead-end step, improving bioremediation of
PCBs (Saavedra et al. 2010, Seeger et al. 2011). The recombinant
Burkholderiales strain C. necator JMS34 bearing the bph locus from
P. xenovorans mineralizes 3-chlorobiphenyl, 4-chlorobiphenyl, 2,4'-
chlorobiphenyl, and 3,5-chlorobiphenyl, without accumulation of
chlorobenzoates (Saavedra et al. 2010, Seeger et al. 2011). Within
the Burkholderiales order, Comamonas testosteroni has been re-
ported as an emerging cellular chassis for bioremediation strate-
gles (Tang et al. 2018)

The overexpression of antioxidant enzymes, specifically
ferredoxin-NADP* reductase (Fpr) and SOD, significantly im-
proved the growth and naphthalene degradation rates in recom-
binant Pseudomonas sp. As1 compared to the wild-type strain. This
indicates that oxidative stress during naphthalene metabolism
may be mitigated by these enzymes. These results suggest that
the overexpression of antioxidant enzymes not only helps in
oxidative stress management but also contributes to enhanced
naphthalene degradation, which is crucial for bioremediation
strategies (Kang et al. 2007).

Recombinant P. putida KT2440 carrying a naphthalene catabolic
plasmid showed improved rhizoremediation performance (Fer-
nédndez et al. 2012). The NAH7 catabolic plasmid enables P.
putida KT2440 to degrade naphthalene while mitigating the
cellular stress associated with this toxic compound. Strain
KT2440R(NAH?7) activates a broad stress response in the presence
of naphthalene, improving tolerance to naphthalene-induced
stress, biomass formation, and, therefore, rhizoremediation.

The ability of P. putida strains to resist environmental stressors
such as high salinity, temperature variations, and toxic substrates
converts them into valuable candidates for bioremediation appli-
cations. The metabolic versatility allows the biodegradation of a
variety of pollutants (e.g. aromatic and aliphatic hydrocarbons)
under challenging conditions. However, genetic modifications that
enhance specific metabolic pathways can also contribute to stress
tolerance. For example, enhancing the enzymatic activities of the
ED and PP pathways in P. putida favors NADPH generation and can
lead to more efficient degradation of pollutants, thereby enhanc-
ing bioremediation processes (Nikel et al. 2021). The introduction
of genes that improve redox balance or enhance the degradation
of toxic compounds has been proposed to support bacteria sur-
viving and thriving in polluted environments (Sanchez-Pascuala
et al. 2018, Martinez-Garcia and de Lorenzo 2024).

The application of synthetic degrading consortia for bioreme-
diation also contributes to the complete mineralization of poly-
cyclic aromatic hydrocarbons and a reduction of stress associated
with toxic metabolites (Laothamteep et al. 2021, Nieto et al. 2023).
Polycyclic aromatic hydrocarbon degradation was enhanced by a
synthetic consortium composed of Burkholderia and Sphingomonas
strains (Nieto et al. 2023). Interestingly, metaproteomic studies
showed downregulation of stress-related proteins, indicating that
the synergistic relationship of both strains toward complete PAH
catabolism also decreases ROS and mitigates stress, thus increas-
ing degradation efficiency (Nieto et al. 2023). In addition, a cocul-
ture of Pseudomonas reinekei and Achromobacter xylosidans showed
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no accumulation of toxic intermediates, contributing to a down-
regulation of the stress response, which improved bacterial fitness
(Bobadilla-Fazzini et al. 2010).

While extensively studied models such as P. putida KT2440
have provided significant insights into stress response affecting
biodegradation performance, degrading strains of the Burkholde-
riales order have gained less attention; this gap in knowledge
needs further exploration. Particularly, novel bioremediation ap-
proaches addressing stress response to toxic compounds are cru-
cial for the effective application and performance of Burkholderi-
ales strains.

Concluding remarks

This review highlights the complex mechanisms employed by
Burkholderiales and environmental bacteria, with particular em-
phasis on P. xenovorans, to address the challenges associated with
the degradation of aromatic compounds and abiotic stressors. The
outstanding capability of P. xenovorans to degrade toxic aromatic
compounds and their metabolites is linked to its stress response
mechanisms, which include general stress and antioxidant adap-
tive responses. In the general stress response, molecular chaper-
ones play a crucial role in maintaining a healthy proteome upon
exposure to a variety of stressors, including stress related to aro-
matic compound degradation and abiotic stresses. In the antioxi-
dant response, the OxyR and SoxR transcriptional regulators play
a key role in orchestrating specific responses against oxidative
stress caused by the degradation of aromatic compounds and ROS.

Despite several stress studies that have been conducted in
aromatic-degrading Burkholderiales strains in the last three
decades, diverse questions remain unanswered. For example, we
need to deepen in diverse aspects of Burkholderiales strains: (i)
the mechanisms that explain why diverse Burkholderiales strains
showed superior resistance to stress caused by the degradation
of toxic aromatic compounds compared to strains from other
taxa, such as Actinomycetota and Bacillota; (ii) the hierarchy of
the stress response regulation network, (iii) the mechanisms of
antioxidant proteins (e.g. SOD), antioxidant molecules (e.g. glu-
tathione and £3-hydroxy-butyrate) and chaperones to maintain
the cellular redox balance; (iv) the response mechanisms to abi-
otic stresses such as salinity, nutrient scarcity, presence of heavy
metals, cold and heat shock; (v) the physiological responses of
the membrane, morphology, and lifestyle to aromatic compounds,
and (vi) the role of the second messengers in stress responses that
has been only partially characterized in a few strains.

This knowledge will pave the way for the degradation perfor-
mance optimization of P. xenovorans and other related environ-
mental strains and the development of more robust and efficient
bacteria for bioremediation applications, especially in ecosystems
with contamination and hostile environmental conditions, such
as salinity and nutrient scarcity.

In this review, genomic analyses unveiled for the first time P.
xenovorans adaptive strategies, including regulating proteostasis
networks, modulation of carbon metabolism, and synthesizing os-
moprotectants to restore osmotic balance. However, future exper-
imental studies should aim to deepen the understanding of stress
response mechanisms in P. xenovorans and other Burkholderiales
species during aromatic compound degradation under environ-
mental stressors. Expanding these studies to diverse environmen-
tal conditions and other environmentally relevant pollutants can
provide insights into specific molecular pathways and regulatory
networks that drive bacterial adaptation.

Synthetic biology remains underdeveloped in Burkholderiales.
However, biotechnological tools such as CRISPR-based genome
editing and omics technologies will enable the engineering
of more robust strains. Diverse Burkholderiales strains exhibit
promising biodegradation capabilities, which need further explo-
ration for large-scale bioremediation and biotransformation ap-
plications. Such bacterial strains may serve as effective bioreme-
diation catalysts, improving pollutant degradation in challenging
environmental scenarios.
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