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Cancer is a leading cause of mortality worldwide, prioritizing the search for
new therapies with improved toxicity profiles. Natural products, such as
essential oils (EOs), are a valuable source of potential chemotherapeutic
agents. Gomortega keule, a Chilean endemic tree, has traditional uses, but
its cytotoxic potential remains unexplored. This study investigated the
chemical composition and cytotoxic activity of Gomortega keule leaf EO.
The chemical analysis revealed a unique profile rich in diterpenes (>50%),
mainly phyllocladene (28.08%) and kaur-16-ene (19.74%), suggesting a
distinct chemotype. The EO demonstrated potent cytotoxic activity against
breast (MCF-7), prostate (PC-3), and colon (HT-29) cancer cell lines, with ICsq
values of 3.97, 2.43, and 9.76 pg/mL, respectively. Remarkably, the EO
exhibited exceptional selectivity, proving significantly more toxic to cancer
cells than to non-tumorigenic cells. Specifically, it achieved a Selectivity Index
(SI) of 24.01 for breast cancer cells compared to normal MCF-10A cells.
Crucially, this selectivity profile significantly outperformed standard
chemotherapeutic agents (daunorubicin and 5-fluorouracil), which
displayed high toxicity towards healthy cells in this model. The mechanism
of action involves the selective induction of reactive oxygen species (ROS),
leading to mitochondrial membrane depolarization (A¥m) and caspase
activation, culminating in apoptotic cell death. These findings highlight G.
keule EO as a promising source for developing selective cytotoxic agents.
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1 Introduction

Malignant neoplasms represent one of the main causes of
morbidity and mortality worldwide. Projections from the
GLOBOCAN project estimate that the global cancer burden
reached nearly 20 million new cases in 2022, a figure expected to
rise to 35 million by 2050 (Bray et al., 2024). Within this landscape,
colorectal cancer ranks as the third most common cancer in the
world (Ferlay et al, 2012; World Health Organization, 2023).
Meanwhile, breast cancer is the most diagnosed neoplasm in
women, and prostate cancer is the most commonly diagnosed in
men, both representing a significant portion of the global
oncological burden in terms of incidence and mortality (Bray
et al., 2024; Palshof et al., 2024; Zahed et al., 2024). Conventional
therapies, such as surgery, radiotherapy, and chemotherapy, remain
the mainstay of treatment. However, their efficacy is often limited by
the appearance of significant adverse side effects and the
development of chemoresistance, a phenomenon that contributes
to therapeutic failure in approximately 90% of patients with
2025). This
alternative and

metastatic disease (Fernandez-Muiioz et al,

limitation has prompted the search for
complementary therapies, with a particular focus on natural
products that may act as chemotherapeutic or chemopreventive
agents with more favorable toxicity profiles.

In this context, natural products of plant origin have re-emerged
as an invaluable source of new bioactive compounds (Sharma et al.,
2022). For colorectal cancer, the use of compounds such as
curcumin and resveratrol as adjuvants to improve the response
to standard chemotherapy has been extensively investigated
(Fernandez-Mufioz et al., 2025). Furthermore, essential oils (EOs)
have shown promise as a therapeutic tool, with studies
their

antimetastatic effects on cell lines of this cancer type (Garzoli

demonstrating cytotoxic, antiproliferative, and
et al,, 2022). The use of oils like lavender has even been explored
to improve the quality of life for patients with a colostomy (Duluklu
and $enol Celik, 2019). Similarly, in breast cancer, EOs have been
the subject of numerous systematic reviews confirming their
pharmacological activity. Compounds such as monoterpenes and
sesquiterpenes have been shown to induce apoptosis and inhibit cell
proliferation (Mustapa et al., 2022). Specific studies, such as one
conducted with Oliveria decumbens EO, have revealed not only pro-
apoptotic effects but also a potent immunomodulatory effect,
suggesting that its mechanism of action extends beyond direct
cytotoxicity and may involve the activation of the host immune
system (Jamali et al., 2020). Regarding prostate cancer, where the use
of complementary and alternative medicines is particularly common
among patients (Patterson et al., 2002), various natural products
such as pomegranate extract, green tea, and curcumin have been
studied Bubley, 2012).
ethnopharmacological research has explored native

(Klempner  and Recently,
South
American plants; for example, the Fabiana imbricata EO, a
Patagonian plant, has been shown to induce apoptosis in prostate
cancer cells through the generation of reactive oxygen species
(Madrid et al., 2025).
Ethnopharmacological which

traditional uses of medicinal plants, is a fundamental tool for

knowledge, explores the

guiding the discovery of new therapeutic agents (Manosroi et al.,
2006). A notable example is found in southern Chile: G. keule (Mol.)
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Baillon, an endemic tree commonly known as Queule. This species,
the sole representative of the Gomortegaceae family, is considered a
botanical relict and an ancient lineage. It is an evergreen tree that can
reach up to 30 m in height, with a discontinuous distribution in the
Coastal Range between the Maule and Biobio regions (Mufioz-
Concha and Garrido-Werner, 2011; Crowley, 2020). This tree not
only holds great scientific interest but also has deep cultural roots in
the cosmovision of the Mapuche people, where it is considered a
sacred tree, a source of strength and energy (newen) (Torri, 2010).
Its traditional use in popular medicine, including the preparation of
beverages from its yellow fruits, has been well documented (Mufioz-
Concha and Garrido-Werner, 2011; Crowley, 2020). Modern
science has begun to validate this ancestral knowledge; on one
hand, it has been demonstrated that its EOs possess potent
antioxidant activity (Simirgiotis et al., 2013). On the other hand,
its antifungal efficacy has been confirmed against phytopathogenic
fungi (Becerra et al., 2010) and, more directly relevant to human
health, against yeasts of the genus Candida (Montenegro et al.,
2025). However, its cytotoxic potential remains largely unexplored.
Building upon its rich ethnopharmacological history and its already
validated biological activities, the present study aims to investigate
the potential of Gomortega keule EO as a cytotoxic agent against
prostate, colon, and breast cancer. Specifically, this work evaluates
the oil’s cytotoxic and selective activity, and delves into its pro-
apoptotic mechanism to offer the first comprehensive assessment of
its value as a source of novel cytotoxic compounds.

2 Materials and methods
2.1 Chemicals and reagents

Daunorubicin (CAS 23541-50-6), 5-fluorouracil (5-FU; CAS 51-
21-8), and 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH;
CAS 2997-92-4) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Stock solutions of these agents were prepared in
dimethyl sulfoxide (DMSO) or sterile water according to the
manufacturer’s instructions. For biological assays, the G. keule
EO was dissolved in ethanol (absolute grade, Merck, Darmstadt,
Germany) to create stock solutions. It is important to note that while
dichloromethane was used as the solvent for GC/MS analysis to
ensure optimal volatility for chemical profiling, ethanol was selected
for cell culture experiments due to its lower cytotoxicity and
compatibility with live-cell assays. The final concentration of
ethanol in the culture medium never exceeded 0.1% (v/v) to
ensure no interference with cell viability.

2.2 Plant material

Leaves of G. keule were collected during the winter (July 2024)
near the locality of Taiguén (32°36'44"S 71°03'51"W), Talcahuano,
Biobio Region, Chile, at an altitude of approximately 70 m a.s.l.
Botanical identification and authentication was verified by Mr.
Patricio Novoa, and a voucher specimen (GQ-0724) was
deposited at the Natural Products and Organic Synthesis
Laboratory of Universidad de Playa Ancha, Valparaiso, Chile.
Once in the laboratory, the fresh leaves were selected for their
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uniformity and absence of damage, washed with distilled water to
remove surface residues, and dried with absorbent paper.
Subsequently, the material was divided into two batches for the
corresponding analyses.

2.3 Preparation of Gomortega keule EO

The G. keule EO was obtained from 500 g of fresh leaves by
hydrodistillation for 5 h, using a Clevenger-type apparatus. (Madrid
et al,, 2025). The resulting hydrolate was then purified by liquid-
liquid partition in a separator funnel with three successive 10 mL
portions of ethyl acetate Finally, the purified EO was stored at 4 °C
pending further chemical and biological analysis.

2.4 Chromatographic analysis of
volatile compounds

Two complementary analyses were performed to characterize
the volatile profile: one on fresh leaves to capture the most volatile
compounds and another on the extracted EO to determine its
majority composition.

2.4.1 Analysis of fresh leaf volatiles by HS-SPME-
GC/MS

2.5 g of fresh leaf fragments were placed in a headspace vial and
equilibrated at 50 °C for 30 min. Subsequently, a solid-phase
microextraction (SPME) fiber (50/30 pm DVB/Car-PDMS) was
exposed to the headspace for 30 min to capture the volatile
compounds. The fiber was desorbed in the gas chromatograph
injector in splitless mode at 250 °C for 5 min.

2.4.2 EO analysis by GC/MS

The G. keule EO was diluted to 1% (v/v) in dichloromethane and
homogenized by vortexing. Subsequently, 1 pL of the sample was
injected for chromatographic analysis.

2.4.3 Chromatographic conditions, compound
identification, and quantification

Both analyses were performed on a Thermo Scientific Trace
1310 gas chromatograph coupled to an ISQ, LT mass spectrometer.
Chromatographic separation was carried out on a Restek RTX-5MS
column (30 m x 0.25 mm ID X 0.25 pm), using helium as the carrier
gas at a constant flow rate of 1.0 mL/min. The oven temperature
program was as follows: initial temperature of 40 °C for 1 min,
followed by a ramp to 200 °C and held for 5 min, and a second ramp
to 250 °C at 8 °C/min, holding for 5 min. The mass spectrometer
operated in electron impact (EI) mode at 70 eV, performing a full
scan over a mass range of 50-450 amu. The identification of volatile
compounds was performed by comparing the obtained mass spectra
with the NIST 2021 library, considering positive identifications for
compounds with a Similarity Index (SI) greater than 800.
Additionally, identities were confirmed by comparing the
calculated Kovat Indices with those reported in the literature.
Finally, the
components was calculated from the chromatographic peak areas

relative percentage composition of the EO

using the area normalization method.
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2.5 Cytotoxicity activity

2.5.1 Cells

Human cancer cell lines, MCF-7 (human mammary gland
adenocarcinoma), HT-29 (human colorectal adenocarcinoma),
PC-3 (human prostate adenocarcinoma) and normal human cell
lines; CCD 841 CoN (colon epithelial), and MCF-10A (epithelial
mammary gland) were obtained from American Type Culture
Collection (Rockville, MD, USA). All tested cell lines were
maintained in a 1:1 mixture of Dulbecco’s modified Eagle’s
medium (DMEM) and Ham’s FI12 medium, containing 10%
heat-inactivated fetal bovine serum (FBS), penicillin (100 U/mL),
and streptomycin (100 ug/mL) in a humidified atmosphere with 5%
CO, at 37 °C. The cells were plated at a constant density to obtain
identical experimental conditions in the different tests, thus to
achieve a high accuracy of the measurements.

2.5.2 SRB bioassay

Sulforhodamine B (SRB) assay was performed as already
described (Silva et al., 2025). To assess cell viability, cells were
seeded at 3 x 10* cells per well in 96-well plates and incubated at
37 °C with 5% CQO,. The cells were treated with the EO at
concentrations ranging from 125 to 100 ug/mL for 72 h.
Following treatment, cells were fixed with 10% trichloroacetic
acid, stained with 0.1% SRB, and then washed to remove
unbound stain. The protein-bound stain was solubilized, and cell
density was determined by measuring fluorescence at 540 nm.
Daunorubicin and 5-fluorouracil were used as positive controls.
Values shown are the mean + standard deviation of three
independent experiments performed in triplicate.

2.5.3 Selectivity index

The selectivity index (SI) was determined by the ratio between
the ICs, value of the cytotoxicity obtained for normal cells and the
value found for a selected cancer cell line, as shown in Equation 1:

SI =1C50 (Normal Cell) /IC50 (Cancer Cell) (1)

Where a SI > 3 was considered to belong to a selective sample
(Moller et al., 2021).

2.5.4 Intracellular ROS generation

Intracellular ROS production was assessed by flow cytometry.
Cells were seeded in 24-well plates at a density of 16 x 10* cells/well
in 500 pL of culture medium. The determination of ROS was
performed following the methodology of Villena et al. (2021)
using a fluorescent probe 2',7'-dichlorofluorescein diacetate
(DCFH-DA). Briefly, cells were treated with the G. keule EO at
concentrations of 5, 10, and 20 ug/mL for a total of 24 h. After
treatment, cells were further incubated with 10 uM DCFH-DA at
37 °C for 30 min. Subsequently, cells were harvested, rinsed, re-
suspended in PBS and analyzed for 2',7'-dichlorofluorescein (DCF)
fluorescence by flow cytometry (FacScalibur, Beckton Dickinson).

2.5.5 Analysis of mitochondrial membrane
potential (A¥m)

Changes in mitochondrial membrane potential (A¥m) were
measured using the cationic fluorescent probe Rhodamine 123, as
previously described (Villena et al., 2021). Briefly, exponentially
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TABLE 1 SPME profile of the Gomortega keule leaves.

10.3389/fphar.2025.1722619

RT (min) Components Identification
1 9.09 a-pinene 10.14 930 930 RL, MS, Co
2 9.62 Camphene 0.50 941 941 RL, MS, Co
3 10.54 Sabinene 4.68 956 956 RL, MS, Co
4 10.64 B-pinene 7.18 970 970 RL, MS, Co
5 12.37 o-cymene 25.28 1014 1014 RL, MS, Co
6 12.50 Isocarvestrene 12.10 1026 1027 RL, MS
7 12.61 Eucalyptol 33.68 1033 1033 RL, MS, Co
8 14.58 Dehydro-p-cymene 0.96 1070 1070 RL, MS, Co
9 16.20 Pinocarveol 0.27 1133 1134 RL, MS
10 17.40 4-terpinenol 1.76 1160 1160 RL, MS, Co
Total identified 96.55
Oxygenated monoterpenes 35.71
Hydrocarbon monoterpenes 60.84

“Experimental retention index for non-polar column.
"Bibliographic retention index for non-polar column, MS, mass spectra.

growing cells were treated with G. keule EO as indicated in the figure
legends. During the final 60 min of incubation, cells were labeled
with 1 pM Rhodamine 123. After treatment, cells were washed with
ice-cold PBS, detached by trypsinization, and immediately analyzed
by flow cytometry. The results are expressed as the percentage of
cells retaining Rhodamine 123 fluorescence, which corresponds to
the cell population with intact mitochondrial membrane potential.

2.5.6 Measurement of caspase activity

Caspase activity, an indicator of apoptosis, was measured using
the CaspACE™ FITC-VAD-FMK in situ marker (Promega,
Santiago, Chile), as described previously (Jara-Gutiérrez et al,
2024). Cells were treated with the G. keule EO (5 and 10 pg/mL)
for 48 h. During the final 20 min of the treatment, cells were
incubated with the FITC-VAD-FMK reagent in darkness at room
temperature. Following incubation, the cells were washed twice with
PBS, harvested by trypsinization, and pelleted by centrifugation
(1500xg for 10 min). The resulting cell pellet was then resuspended
in fresh PBS for immediate analysis by flow cytometry, with
fluorescence detected using the FL3 filter. Results are expressed
as the percentage of FITC-positive cells, representing the cell
population undergoing apoptosis.

2.6 Statistical analysis

All in vitro assays were performed in three independent
biological replicates, and each replicate was carried out in
triplicate. The results are expressed as mean values + Standard
Deviation (SD). Statistical significance was defined as p < 0.05.
Following the protocol described by Jara-Gutiérrez et al. (2024), and
due to the non-parametric nature of the data, the results were
analyzed using a Kruskal-Wallis ANOVA with a confidence level
of 95% using STATISTICA 7.0 software.

Frontiers in Pharmacology

3 Results and discussion

3.1 Profile of volatile compounds from fresh
leaves (HS-SPME)

The HS-SPME analysis of fresh G. keule leaves identified a total
of 10 compounds, which corresponded exclusively to hydrocarbon
(60.84%) and oxygenated (35.71%) monoterpenes. Of these, the
major components were eucalyptol (33.68%), o-cymene (25.28%),
isocarvestrene (12.10%), and alpha-pinene (10.14%), as detailed in
Table 1 and Figure 1.

This is the first time that volatiles emitted from the fresh leaves
of G. keule have been reported, which contributes to the
phytochemical knowledge of this ancestral tree.

3.2 Composition of Gomortega keule EO

The G. keule EO, extracted from its fresh leaves, was obtained
with a yield of 1.22% (v/w) and is mainly composed of hydrocarbon
diterpenes (54,77%), followed by hydrocarbon sesquiterpenes
(18.81%), and oxygenated sesquiterpenes (9.95%) (Table 2).

Fourteen compounds were identified in the G. keule EO, which
corresponded to 90.55% of the total oil analyzed, and the main
components were phyllocladene (28.08%), kaur-16-ene (19.74%),
and cadalene (14.92%) (Figure 2).

The phytochemical analysis of G. keule leaves reveals a fascinating
duality in its volatile compound profile, which is directly dependent
on the analytical method used. The comparison between the profile
obtained from fresh leaves by HS-SPME and the composition of the
EO extracted by hydrodistillation shows drastic differences. Far from
being contradictory, these results are complementary and offer a
comprehensive view of the plant’s phytochemistry. HS-SPME analysis
is a non-invasive and gentle technique that captures compounds
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https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1722619

Madrid et al.

P

eucalyptol isocarvestrene

FIGURE 1
Major volatile compounds present in the leaves of Gomortega keule

emitted into the headspace at moderate temperatures. By its nature,
this method is inherently biased towards more volatile, low-
2015).
Consequently, it is not surprising that the profile of the fresh

molecular-weight ~ molecules  (Souza-Silva, et al,
leaves is exclusively dominated by monoterpenes (96.55%). This
result represents the profile of volatiles that the leaf naturally emits
into its environment, which could be related to ecological functions
such as defense against herbivores or chemical communication. On
the other hand, hydrodistillation is an exhaustive extractive method
that uses high temperatures (100 °C) and steam entrainment over a
prolonged period. This process forces the release of less volatile,
higher-molecular-weight compounds stored in the plant’s glandular
structures, such as sesquiterpenes and, notably, diterpenes (Siddiqui et
al,, 2024). The complete absence of the monoterpenes detected by
SPME in the EO is a key finding, likely because these compounds, due
to their extreme volatility and higher water solubility, were lost
through evaporation or remained dissolved in the aqueous phase
during the energetic distillation process (Masango, 2005). Thus, the
two phytochemical profiles are not mutually exclusive: the HS-SPME
analysis reveals the natural “aroma” of the fresh leaf, while the EO
analysis shows the total content of stored semi-volatile and heavy
metabolites. This distinction is fundamental. This study reveals
significant differences in both the yield and the phytochemical
profile of G. keule EO compared to previously published data,
suggesting the existence of distinct chemotypes. Specifically, the
obtained yield was 1.21% (v/w), an intermediate value between
those reported by Becerra et al. (2010) (1.43%) and Montenegro
etal. (2025) (0.99%). These variations in yield are expected and can be
attributed to environmental and geographical factors that influence
the production of secondary metabolites (Moghaddam et al,, 2023;
Dobhal et al., 2024; Joji¢ et al., 2024). However, the most notable
difference lies in the chemical composition. Our EO is distinguished
by a unique profile with a predominance of diterpenes (>50%), a very
uncommon characteristic in EOs due to the high molecular weight
and low volatility of these compounds (Wani et al.,, 2021). This profile
contrasts sharply with the findings of Montenegro et al. (2025), whose
oil was dominated by oxygenated monoterpenes (>60%), such as
eucalyptol and 4-terpineol, with a minimal presence of diterpenes
(<5%). Despite these differences, a point of structural connection
exists: the study by Becerra et al. (2010) reported 20% kaurene, a
diterpene that shares the same base skeleton as the kaur-16-ene
identified in both our study and that of Montenegro et al. (2025).
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o-cymene o—pinene

This combination of radically different phytochemical profiles with
comparable extraction yields is the most compelling evidence for the
existence of genetically determined chemotypes in G. keule (Martinelli
et al., 2023).

3.3 Cytotoxic activity

The G. keule EO exhibited potent cytotoxic activity against all
cancer cell lines tested, with the corresponding ICs, values presented
in Table 3.

The G. keule EO exhibited potent cytotoxic activity against
breast (MCF-7), prostate (PC-3), and colon (HT-29) cancer cell
lines, with IC5, values of 3.97 + 0.67, 2.43 + 0.73, and 9.76 + 1.03 g/
mL, respectively. All of these values are well below the 30 pg/mL
threshold established by the U.S. National Cancer Institute (NCI) to
consider an extract a promising candidate with cytotoxic potential
(Canga et al., 2022). However, while potent cytotoxicity is a crucial
first step, the true therapeutic potential of a compound lies in its
ability to selectively target cancer cells while sparing healthy ones.
This critical aspect is measured by the selectivity index (SI), where a
value greater than 3 is considered indicative of meaningful selectivity
(Mahmood et al., 2024).

To investigate this, we performed a tissue-specific comparison for
breast cancer, evaluating the EO’s effect on the MCEF-7 cancer line
against its non-tumorigenic counterpart, the MCF-10A line. The
outcome was remarkable, revealing an exceptional SI of 24.01, which
confirms that the EO is profoundly more toxic to breast
adenocarcinoma cells than to healthy epithelial cells from the same
tissue. This favorable selectivity profile was not limited to breast cancer.
The EO also showed a strong selective action against colon cancer (SI =
5.06) when comparing the HT-29 and CCD 841 CoN lines. For the PC-
3 prostate cancer line, the CCD 841 CoN line served as the healthy
control in the absence of a non-tumorigenic prostate line in our panel.
Despite being a cross-tissue comparison, this test yielded a remarkably
high ST of 20.30, further reinforcing the EO’s promising safety profile
and its specific action against malignant cells.

To properly contextualize these findings, the EO’s performance
was benchmarked against standard chemotherapeutic agents
(Table 3). The G. keule EO exhibited an exceptional SI of
24.01 for breast cancer cells when compared to the tissue-specific
normal line MCF-10A. In sharp contrast, the standard drugs showed
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TABLE 2 EO composition of Gomortega keule.

RT (min) Components Identification
1 7.54 Viridiflorene 1.24 1492 1493 RL, MS
2 7.81 Not identified 0.07
3 7.95 Calamenene 2.85 1516 1517 RL, MS
4 8.34 a-calacorene 7.69 1548 1548 RL, MS
5 8.53 Diepicedrene-1-oxide 0.33 1551 1551 RL, MS
6 8.61 Not identified 0.61
7 8.68 Not identified 0.89
8 9.00 (-)-Spathulenol 1.01 1574 1574 RL, MS, Co
9 9.14 Globulol 2.30 1580 1580 RL, MS
10 9.30 Cubeban-11-ol 0.99 1587 1588 RL, MS
11 9.33 Not identified 0.98
12 9.57 Not identified 0.28
13 9.78 a-corocalene 3.59 1605 1605 RL, MS
14 9.92 Epicubenol 0.86 1626 1627 RL, MS
15 10.17 Not identified 0.77
16 10.21 Not identified 0.43
17 10.47 Not identified 0.30
18 10.49 Not identified 0.39
19 10.75 Not identified 0.24
20 10.92 Cadalene 14.92 1643 1643 RL, MS
21 11.21 Not identified 0.13
22 11.58 Not identified 0.82
23 11.61 Not identified 0.79
24 12.25 Not identified 0.16
25 12.32 Not identified 0.25
26 12.59 Not identified 0.60
27 12.61 Not identified 0.36
28 13.01 Not identified 0.24
29 13.69 Not identified 0.44
30 13.72 Not identified 0.18
31 16.29 Rimuene 2.39 1884 1885 RL, MS
32 17.84 Pimaradiene 4.56 1930 1931 RL, MS
33 19.58 Phyllocladene 28.08 2012 2012 RL, MS
34 20.18 Kaur-16-ene 19.74 2040 2040 RL, MS
35 33.55 Not identified 0.42
Total identified 90.55
Total not identified 9.45
Hydrocarbon sesquiterpenes 30.29

(Continued on following page)
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TABLE 2 (Continued) EO composition of Gomortega keule.

RT (min) Components Identification
Oxygenated sesquiterpenes 5.49
Hydrocarbon diterpenes 54.77 ‘ ‘

“Experimental retention index for non-polar column.
"Bibliographic retention index for non-polar column, MS, mass spectra.

phyllocladene kaur-16-ene cadalene

FIGURE 2
Major compounds present in Gomortega keule EO.

TABLE 3 Cytotoxicity (ICs) and selectivity index (SI) of Gomortega keule EO compared to standard drugs.

Sample Cell line ICs0 (ug/mL) Sl
G. Keule EO MCE-7 3.97 + 0.67 24.01°
PC-3 243 +£0.73 20.30°
HT-29 9.76 + 1.03 5.06°

CCD 841 CoN 49.34 + 033 —

MCE-10A 95.32 + 0.54 —
Daunorubicin MCE-7 1.86 + 0.05 1.15*
PC-3 132 + 0.04 9.14°
HT-29 19.32 + 0.50 0.62°

CCD 841 CoN 12.07 + 0.40 —

MCEF-10A 2.13 + 0.41 —
5-FU MCE-7 2230 + 0.20 0.15°
PC-3 16.42 + 0.60 2.54°
HT-29 8.90 + 0.70 4.69°

CCD 841 CoN 41.71 + 030 —

MCF-10A 3.25 +0.23 —

Results are expressed as mean + standard deviation (SD) of three independent experiments performed in triplicate (n = 3). ICs: Concentration required to inhibit cell proliferation by 50%. SI
(Selectivity Index) = ICso Normal Cell/ICs, Cancer Cell.

*SI, calculated using MCF-10A, as the specific normal breast reference line.

bS], calculated using CCD, 841 CoN as the reference line.

significantly lower selectivity in this specific model. Daunorubicin ~ This remarkable difference highlights the G. keule EO as a promising
presented an SI of 1.15, while 5-FU showed an SI of 0.15 against the ~ candidate with a potentially superior safety profile and a wider
MCEF-10A line, due to their high toxicity towards healthy breast  therapeutic window compared to these conventional agents in this
epithelial cells (ICsy values of 2.13 and 3.25 pg/mL, respectively).  in vitro model.
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FIGURE 3

Reactive oxygen species (ROS) production was measured in nontumor breast cell line [(A) = MCF-10A] and cancer cell lines [(B) = MCF-7, (C) = PC-3

and (D) = HT-29] after being exposed for 24 h to three different concentrations of Gomortega keule EO. Treatments: EO5 = 5 pg/mL, EO10 = 10 pg/mL,
and EO20 = 20 pg/mL. For ROS production control, 10 uM AAPH (AAPH) was used as a positive control and 0.1% ethanol as a solvent control (SC). (A-D)
Show the mean percentage of cells with ROS production. Data represent the mean + standard deviation (SD) of three independent experiments
performed in triplicate (n = 3). Statistical significance was determined by Kruskal-Wallis ANOVA. *p < 0.05 compared to the solvent control (SC).

It is important to acknowledge a specific limitation in our
selectivity analysis regarding prostate cancer. The Selectivity
Index (SI) for the PC-3 cell line was calculated using the non-
tumorigenic colon epithelial line (CCD 841 CoN) as a reference, due
to the unavailability of a specific normal prostate cell line in our
panel. While this comparison provides a valid estimate of the oil’s
general toxicity towards healthy epithelial cells, it constitutes a cross-
tissue comparison. Therefore, the reported selectivity for prostate
cancer should be interpreted with caution, as a tissue-specific model
(e.g., using RWPE-1 or PNT cell lines) would provide a more precise

Frontiers in Pharmacology

assessment of the therapeutic window for this specific cancer type
(Bello et al., 1997; Rumsby et al.,, 2011).

Building on these compelling activity and selectivity results, we
sought to understand the underlying mechanism of action. A central
finding is that the cytotoxic activity of the G. keule EO is directly
associated with the induction of intracellular oxidative stress. To
evaluate this, we utilized AAPH (2,2’-azobis(2-amidinopropane)
dihydrochloride) as a positive control, given its well-established
role as a peroxyl radical generator that mimics oxidative stress
conditions. As shown in Figure 3, the treatment with G. keule EO
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FIGURE 4

Mitochondrial membrane potential (A¥m) was analyzed in nontumor [(A) = MCF-10A] and cancer cell lines [(B) = MCF-7, (C) = PC-3 and (D) = HT-
29] after being exposed for 48 h to three different concentrations of Gomortega keule EO. Treatments: EO5 = 5 ug/mL, EO10 = 10 pg/mL, and EO20 =
20 pg/mL 0.1% ethanol was used as solvent control (SC). (A—D) show the mean percentage of cells retaining A¥m. Data represent the mean + standard
deviation (SD) of three independent experiments performed in triplicate (n = 3). Statistical significance was determined by Kruskal-Wallis ANOVA.

*p < 0.05 compared to the solvent control (SC).
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Caspase activity was analyzed in nontumor [(A) = MCF-10A] and cancer cell lines [(B) = MCF-7, (C) = PC-3 and (D) = HT-29] after being exposed for

48 h to two different concentrations of Gomortega keule EO. Treatments: EO5 = 5 yg/mL and EO10 = 10 pg/mL. For caspase activation control, 1 uM
daunorubicin (Dau) was used as a positive control and 0.1% ethanol as solvent control (SC). (A—D) Show the mean percentage of cells with active
caspases. Data represent the mean + standard deviation (SD) of three independent experiments performed in triplicate (n = 3). Statistical significance

was determined by Kruskal-Wallis ANOVA. *p < 0.05 compared to the solvent control (SC).
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induced a differential response in intracellular ROS levels. A
significant and concentration-dependent increase was clearly
observed in PC-3 cells (Figure 3C) compared to the solvent
control (CS). In contrast, in MCF-7 and HT-29 cells (Figures
3B,D), ROS levels measured at 24 h remained comparable to the
solvent control. This suggests that while oxidative stress appears to
be a primary driver of cytotoxicity in prostate cancer cells, the
mechanism in breast and colon cancer cells may involve different
kinetic profiles or alternative upstream triggers for the observed
mitochondrial depolarization. To validate this, the MCEF-10A cell
line was strategically chosen for comparative flow cytometry studies
precisely because of its high resistance (high ICs, value). This
resilience made it the ideal negative control, allowing us to
analyze cellular mechanisms like ROS production at EO
concentrations that are lethal to cancer cells. This finding, which
confirms that the pro-oxidant effect is a specific mechanism, aligns
with a growing body of literature on the action of EOs. For instance,
Kong et al. (2022) also documented that various EOs can alter the
cellular redox balance to induce biological damage in target cells.

This oxidative stress often leads to mitochondrial dysfunction, a
key event in apoptosis. In accordance with this, our results
demonstrate a selective loss of mitochondrial membrane potential
(A¥m) only in the cancer cell lines (MCF-7, PC-3, and HT-29), as
evidenced in Figure 4. This finding aligns perfectly with recent
studies, such as that on Cinnamomum zeylanicum oil, which was
also shown to inhibit melanoma cell proliferation by increasing ROS
and causing mitochondrial membrane depolarization selectively in
cancer cells, but not in normal human cells (PBMCs) (Cappelli et al.,
2023). The loss of A¥m is a point-of-no-return in the intrinsic
apoptosis pathway, as it leads to the release of pro-apoptotic factors
from the mitochondria into the cytosol (Blowman et al., 2018).

This release of mitochondrial factors activates the caspase
cascade, which involves the executioner proteases of apoptosis.
Indeed, our analysis confirmed the activation of caspases in the
breast (MCF-7) and prostate (PC-3) cancer cell lines following
treatment with EO (Figure 5).

This result is consistent with studies on other EOs, such as that
of Origanum majorana, which also induces apoptosis in lung and
epidermoid carcinoma cells through the activation of caspase-3/7
(Gokhan, 2022). It is interesting to note that, although the colon
(HT-29) cell line also showed a loss of A¥m, significant caspase
activation was not detected under the same conditions. This could
suggest that, in this cell line, the oil induces a different type of cell
death (such as necrosis or a caspase-independent apoptotic
pathway) or that caspase activation occurs at a later time point
than the one analyzed. Taken together, these results delineate a
clear mechanism of action for G. keule EO: the induction of ROS
leads to mitochondrial damage (loss of A¥m), which in turn
triggers caspase activation and apoptotic cell death, at least in
breast and prostate cancer cells. This apoptotic pathway is a
hallmark of the cytotoxic properties reported for many EOs and
their terpenoid components. For instance, frankincense extracts
have also been shown to induce cancer cell-specific cytotoxicity by
activating caspases and inducing PARP cleavage (Blowman et al.,
2018; Kong et al., 2022). Crucially, the selectivity of these effects
towards tumor cells further reinforces the therapeutic potential of
this EO as a source of natural cytotoxic compounds. Finally, it is
important to acknowledge that while the high abundance of
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diterpenes suggests they play a major role in the observed
cytotoxicity, the G. keule EO is a complex mixture. High
diterpene contents, although uncommon due to their low
volatility (Ben Miri, 2025), have been reported in other species
such as Euphorbia mauritanica, which also shares the presence of
kaur-16-ene (Essa et al., 2021). Current literature suggests that the
biological activity of EOs often results from the synergistic
interaction of their major and minor constituents, producing a
combined effect greater than the sum of individual compounds
(Essa et al., 2021; Ben Miri, 2025). Therefore, the potent and
selective activity reported here is attributed to the G. keule EO as
a whole.

4 Conclusion

The present study characterizes a unique chemotype of
Gomortega keule EO, distinguished by a high prevalence of
diterpenes such as phyllocladene and kaur-16-ene, which differs
notably from previous reports. This EO demonstrated potent
cytotoxic activity against breast, prostate, and colon cancer cell
lines. While the dominant diterpenes likely contribute to this
effect, the observed activity is attributed to the EO as a complex
mixture, suggesting potential synergistic interactions among its
constituents. Mechanistically, the cytotoxic effect is driven by the
selective induction of oxidative stress (ROS) in tumor cells, leading
to mitochondrial membrane depolarization and subsequent
caspase-dependent apoptosis. Crucially, our comparative analysis
revealed that the G. keule EO possesses exceptional selectivity
towards breast cancer cells (SI > 24) when compared to normal
mammary epithelial cells (MCF-10A). This selectivity profile
significantly outperforms that of standard chemotherapeutic
agents like daunorubicin and 5-fluorouracil in this specific
These validate the
relevance of G. keule and highlight its potential as a promising

model. findings ethnopharmacological

source of bioactive compounds with selective cytotoxic properties.
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