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Abstract

Background: Since 2008, the kiwifruit industry has been significantly impacted by Pseu-
domonas syringae pv. actinidiae (Psa), the agent responsible for bacterial canker in kiwifruit.
Existing treatments, such as copper-based compounds and antibiotics, have faced chal-
lenges related to resistance and soil contamination. Phage therapy is a promising and
safe alternative for controlling this pathogen. This study aimed to evaluate the use of a
mixture of four isolated and characterized bacteriophages as potential biocontrol agents
against Psa. Methods: Trials were conducted at two locations in Chile, where Psa presence
was reported during the 2019/2020 and 2020/2021 seasons, with a focus on the spring
stages. Different formulations were tested each season to evaluate possible improvements
in effectiveness. Pseudomonas spp. isolates obtained from epiphyte populations were char-
acterized using morphological, biochemical (LOPAT), and molecular techniques. Results:
Field trials demonstrated that the phage mixture effectively reduced the damage associated
with Psa on kiwi leaves, resulting in a decrease in the Pseudomonas spp. bacterial load
(42.9% for Peumo and 25% for Linares) at both locations during the first season trials. This
decrease is associated with a reduction in the incidence and severity of the disease in kiwi
plants in the Peumo orchard. In both seasons, bacteriophages reduce Psa symptoms in
treated kiwi plants compared to untreated controls, at least at one location and evaluation.
In both orchards during the first season, bacteriophages also outperformed copper- and
antibiotic-based treatments used by farmers. Bacteriophage therapy is eco-friendly and
safe for both applicators and consumers.

Keywords: bacteriophage; Pseudomonas syringae pv. actinidae; Psa; Pss; biocontrol; Kiwifruit
Bacterial Canker

1. Introduction

Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker in green-
fleshed kiwi (Actinidia deliciosa) and yellow-fleshed kiwi (A. chinensis) and is currently the

Antibiotics 2025, 14, 1023

https://doi.org/10.3390/antibiotics14101023


https://doi.org/10.3390/antibiotics14101023
https://doi.org/10.3390/antibiotics14101023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0009-0003-6405-7460
https://orcid.org/0000-0002-7721-001X
https://orcid.org/0009-0006-1755-8256
https://orcid.org/0000-0003-3969-2078
https://orcid.org/0000-0002-8092-0987
https://orcid.org/0000-0003-4819-6148
https://orcid.org/0000-0002-4861-7961
https://doi.org/10.3390/antibiotics14101023
https://www.mdpi.com/article/10.3390/antibiotics14101023?type=check_update&version=1

Antibiotics 2025, 14, 1023

2of 16

cause of severe economic losses in countries such as Italy, New Zealand, Portugal, Chile
and South Korea [1-3]. Between 2008 and 2011, almost simultaneous re-emergence of the
same aggressive pathogen occurred in all significant kiwi-producing areas worldwide;
therefore, it was considered a pandemic disease [4,5]. In 2011, the pathogen was also
officially reported for the first time in Chile, indicating that Psa control in kiwifruit is
mandatory throughout the national territory [6,7].

Pseudomonas syringae, pv. actinidiae infection can cause symptoms such as necrotic
spots with a yellow chlorotic halo on leaves during spring and summer. Wilting or with-
ering of the flowers can occur in buds and flowers, resulting in the loss of future fruit. In
early spring, abundant reddish-orange exudates are associated with cankers and wounds
on the arms and trunks of infected plants. It is also possible to see cankers in the wood and
branches or necrosis in the subcortical area without exudate [8]. Psa can penetrate natural
openings (such as the stigma of flowers, stoma, lenticels) and wounds to start an infection.
Subsequently, it spreads rapidly in host tissues, causing severe symptoms, crop losses, and,
eventually, plant death [3,7]. Disease development is associated with specific environmental
conditions [3,9,10], primarily in the spring and autumn. Temperatures between 10 °C and
25 °C, water availability, rain, and wind facilitate pathogen dispersal [4,7,11]. These condi-
tions greatly favor the multiplication of the bacterium, allowing it to spread systemically
from the leaf to young shoots. During summer, very high temperatures can reduce the
multiplication and dispersal of bacteria [4].

Currently, five different biovars are recognized within Psa (biovars 1, 2, 3, 5, and 6).
Biovar 4 was previously considered a less virulent variant of Psa; however, it is now
classified as part of the pathovar actinidifoliorum (Psaf) [7]. In Chile, to date, only biovar 3 has
been reported [12], corresponding to the most virulent biovar of this pathovar, which is
also responsible for the most recent outbreaks of Psa worldwide, including those in Europe,
New Zealand, and, more recently, Japan and Korea [7].

The global outbreak of Psa has prompted research to develop effective strategies
for containing this pathogen and minimizing economic losses in the kiwifruit industry.
Currently, the control methods against Psa include adopting preventive practices to reduce
the proliferation of outbreaks, such as constant monitoring and early detection, disposal of
infected material, disinfection of tools, and the use of biological control agents (BCAs) and
elicitors. However, most importantly, the frequent spraying of orchards with copper-based
compounds, particularly cuprous oxide (CuyO), and antibiotic formulations containing
streptomycin [13], has had limited success [4,14,15]. The application of these chemical
compounds favors the emergence of Psa strains resistant to copper and antibiotics [7,16],
which have been reported to possess copA and copB copper resistance genes and other
antibiotic resistance genes [17-19]. Authorized treatments for this disease are still scarce,
their efficacy is limited, and most are not environmentally friendly [20-22]. Evidence of
phytotoxicity caused by the continued use of Cu, combined with European regulations
restricting these agrochemicals, highlights the need for new control strategies.

One alternative is to use bacteriophages as a biocontrol strategy to eliminate bacteria.
Phages are environmentally friendly, can be highly specific [20], and, unlike broad-spectrum
antimicrobials, they do not affect the normal microbiota of plants [23-25]. Furthermore,
bacteriophage treatments have no harmful effects on humans, animals, or plants [26,27].
Other advantages of phages over antibiotics, such as bactericides and copper-based chemi-
cals, include their natural ubiquity in the biosphere, self-replication within the bacterial
host, and therefore accumulation where they are most needed [23,28-32]. These character-
istics make phages a promising and natural antibacterial method for controlling Kiwifruit
Bacterial Canker [1,25].
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The use of bacteriophages to control pathogenic bacteria associated with agriculture
has been proposed previously. A review published in 2017 [33] summarizes different studies
on the use of bacteriophages against Pectobacterium carotovorum spp., Dickeya solani, Ralstonia
solanacearum, and Xanthomonas campestris pv. versicatoria, Xylella fastidiosa, Pseudomonas
syringae pv. porri, and Pseudomonas tolaasii. A study in New Zealand [1], based on in vitro
assays, evaluated the potential of phages for Psa control and showed that their phages
could infect different strains of Psa isolated from different countries. Another study in
Portugal [34] reported that phage &6 could reduce the bacterial concentration of Psa in ex
vivo tests on kiwifruit leaves under laboratory conditions. Other groups have reported
the isolation and characterization of phages against Psa in Italy [35-37], Korea [38,39],
and China [24,25,40]. A recent review summarizes different experiences with the use of
bacteriophages as biocontrol agents for P. syringae [41].

In Chile, a recent report [42] isolated and characterized phages against Psa. A group
of selected phages were evaluated for their effectiveness under laboratory and greenhouse
conditions, demonstrating their potential as biocontrol agents. Despite numerous reports
on the potential use of bacteriophages to control bacterial cankers in kiwi plants, none of
them have demonstrated their efficacy under field conditions. Therefore, it is imperative
to gain a deeper understanding of the efficacy of phages in controlling Psa under natural
conditions and thus transfer this technology to kiwifruit orchards [34].

In this study, we evaluated the effects of foliar application of a mixture of specific
bacteriophages against Pseudomonas syringae pv. actinidiae to control the disease in two
productive kiwifruit orchards in two different seasons and compared the effectiveness of
phage treatment with regular conventional bactericide treatments.

2. Results

2.1. First Season 2019/2020
Bacteriophage Formulations’ Effect on Kiwifruit Bacterial Canker

During the first trial season (2019/2020), the foliar damage index (DI) was evaluated for
kiwifruit plants in two fields located in Peumo and Linares. During spring, data were recorded
on three occasions: 30, 45, and 90 days after the first application (DAA) (Figure 1A-F).

In Peumo, the effect of farmer management (T1) was not different from that of the
control (T0) at 30, 45, and 90 DAA (Figure 1A-C). In the trial conducted in Linares, the data
showed consistently worse effects of farmer management (Figure 1D-F). This treatment
increased the damage index significantly in comparison to the control treatment (T0).

In Peumo during the second evaluation (Figure 1B), all three phage formulations (T2,
T3, and T4) showed statistical differences from the farmer’s management (T1), and (T2,
T4) were also statistically different from the control (T0), being efficient in controlling the
damage caused by the disease. In Linares (Figure 1E), the phage formulation (T3) was also
different from the control treatment (T0) and the farmer’s treatment.

2.2. Second Season 2020/2021
2.2.1. Bacteriophage Formulations Effect in Kiwifruit Bacterial Canker

During the second season trials (2020/2021), the effect of bacteriophage formulation
in Peumo, statistical differences between treatments were observed at 90 DAA. Although
no significant differences were observed between any treatment and the control treatment
(T0), significant differences were noted between the phage treatment (T3) and both the
conventional treatment (T1) and the milk treatment (T2), but no differences between the
control treatment. These results reinforce the potential of phages to control Psa infections,
although they also indicate that further development is needed for this formulation.
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Figure 1. Effectiveness of treatments against bacterial canker development in two kiwifruit fields
during the first season (2019-2020). Evaluated using the Damage Index (DI), corresponding to the
percentage of leaf area in the presence of necrotic spots (1 = 10). Data were recorded 30, 45, and
90 days after treatments were applied in Peumo (A—C) and Linares (D-F). (T0) Control only water;
(T1) Farmer’s management; (T2) Phage formulation 1; (T3) Phage formulation 2; (T4) Farmer’s
management intercalated with phage formulation 2. Error bars represent standard deviations.

Different letters above the bars indicate statistical differences among treatments according to Turkey’s
HSD test (p < 0.05).

In Linares was observed in the second and third evaluations (Figure 2E,F), that plants
sprayed with phage-based treatments in LB medium (phage formulation 1) (T3) presented
the lowest DI; however, it was at 45 DAA when statistical differences were observed in
comparison with the control treatment (T0), indicating the efficacy of the treatment in
reducing symptomatology. In Linares’s location, at 90 DAA (Figure 2F), the use of milk (T2)
and its use as an excipient for phage formulation (T4) show a negative impact on the DI
measures, compared to phage treatment (T3). Although phage treatment (T3) did not show

statistically significant differences compared to the control treatment (T0), it consistently
exhibited the lowest damage value.

2.2.2. Epiphytic Bacterial Populations, LOPAT, and Molecular Identification

Only in the first season, epiphytic bacterial populations isolation was performed
(Figure 3). Samples were collected to isolate and identify the bacteria present on the kiwi
leaves before treatment applications.

The epiphytic bacterial load was high in the control treatment (T0) group and in the
early stages of treatment, ranging from 10° to 103 CFU/mL (Figure 3A,D). The bacterial
load decrease by up to 43% after 60 days of treatment with phage formulations 1 and 2

(Figure 3), corresponding with a decrease in foliar damage observed in the first season of
evaluation in Peumo (Figure 1B,C).
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Figure 2. Effectiveness of treatments against bacterial canker development in two kiwifruit fields
during the second season (2020-2021). The Damage Index (DI) corresponds to the leaf area percentage
with necrotic spots (1 = 10). Data were recorded 30, 45, and 90 days after treatments were applied in
Peumo (A-C) and Linares (D-F). (T0) Control only water; (T1) Farmer’s management; (T2) Only milk;
(T3) Phage formulation 1; (T4) Phage formulation 2 (including milk). Error bars represent standard

deviations. Different letters above the bars indicate statistical differences among treatments according
to Turkey’s HSD test (p < 0.05).
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Figure 3. Epiphytic bacterial populations. Samples were evaluated before treatment application,
30 days after treatment application (DAA), and 60 DAA in Peumo (A-C) and Linares (D-F). The
total bacterial population (CFU/mL) per plate was quantified. Each sample pool was processed
individually by plate dilution of a homogenate prepared from 10 leaves. (T0) Control only water;
(T1) Farmer’s management; (T2) Phage formulation 1; (T3) Phage formulation 2; (T4) Farmer’s
management intercalated with phage formulation 2. Error bars represent standard deviations.

Different letters above the bars indicate statistical differences among treatments according to Turkey’s
HSD test (p < 0.05).



Antibiotics 2025, 14, 1023

6 of 16

Representative bacteria were recovered from epiphytic populations, including P. flu-
orescens, other Pseudomonas species, and other genera (Tables 1 and 2). These organisms
could exert natural control of Psa and Pss bacteria and may exhibit resistance to copper
or antibiotic treatments. The effect of these bacterial populations should be evaluated
in the future.

Table 1. Results of LOPAT [43] performed on the representative of the group of fluorescent Pseu-
domonas recovered during the first season of Peumo and Linares trials.

Levan Type Oxidasa Potato Arginine Tabacco Hyper- .
Isolates Orchard DAA Colonies Reaction Root Dihydrolase Sensitivity Species
FF4 Peumo 0 + + - + — P. fluorescens
FF6 Peumo 30 + + - + — P. fluorescens
FF2 Peumo 30 + + - + - P. fluorescens
3C Peumo 60 + — — — + P. syringae
BP2 Peumo 30 + - - - + P. syringae
BP4 Peumo 30 + - - - + P. syringae
BP10 Peumo 0 + — - - + P. syringae
F1 Peumo 0 + - - - + P. syringae
BM1 Peumo 60 + - - - + P. syringae
BP7 Peumo 0 + - - - + P. syringae
BP1 Peumo 60 + — - - + P. syringae
AM3 Peumo 60 + — - - + P. syringae
BP12 Peumo 0 + - - - + P. syringae
BP8 Peumo 60 — - + — + P. viridiflava
FGL5 Linares 30 + + - + - P. fluorescens
FGL10 Linares 30 + + - + — P. fluorescens
FPL8 Linares 60 - + - + — P. fluorescens
FPL7 Linares 60 + — - - + P. syringae
FPL11 Linares 30 + — - - + P. syringae
BML4 Linares 60 + — - - - P. putida *
BML2 Linares 60 — + — + - P. putida *
FPL5 Linares 60 + + + - - P. marginalis
FPL3 Linares 60 - - - - - P. umsongensis *
* Isolates taxonomically assigned exclusively based on 165 rRNA gene sequence analysis.
Table 2. Molecular and phenotypic characterization of bacterial isolates from kiwifruit leaves based
on LOPAT test, species-specific PCR primers, 165 rRNA gene sequencing, and syrB gene analysis.
Code Species by Primers Gen rDNA 16s o Acc. Gen syrB Acc. Ident .
Isolates LOPAT Psa/Pv PCR PCR Ident (%) Number PCR Number ) Species
Reference Reference
FGL5 P. fluorescens P. fluorescens 100 MN511732 P. fluorescens
FF2 P. fluorescens P. fluorescens 100 MN511732 P. fluorescens
FGL10 P. fluorescens P. fluorescens 100 MN511732.1 P. fluorescens
FPL7 P. syringae Ps. actinidia Psa
3C P. syringae Ps. actinidia Psa
FPL11 P. syringae Ps. actinidia Psa
BP2 P. syringae P. syringae 99.8 MK388374.1 Ps. syringae MK453199 93.2 Pss
BP4 P. syringae P. syringae 100 CP047267 Ps. syringae MK453199 93.3 Pss
BP10 P. syringae P. syringae 100 CP047267 Ps. syringae MK453199 93.1 Pss
F1 P. syringae P. syringae 100 CP047267 Ps. syringae MK453199 93.8 Pss
BM1 P. syringae P. syringae 100 KC816628.1 Ps. syringae MK453199 93.6 Pss
BP7 P. syringae P. syringae 100 MK637897 Ps. syringae MK453199 93.2 Pss
BP1 P. syringae P. syringae 100 LC508793.1 Ps. syringae MK453199 93.2 Pss
AM3 P. syringae P. syringae 100 MK637897 Ps. syringae MK453199 93.2 Pss
BP12 P. syringae P. syringae 96.86 KF681132 P. syringae
BML4 n.i. P. putida 99.87 KM187292 P. putida
FPL5 P. marginalis P. marginalis
FPL3 n.i. P. umsongensis 99.62 CP044409 P. umsongensis
BML2 n.i. P. putida 100 KM187292 P. putida
BP8 P. viridiflava P. vidiriflava - 99.63 MN989115 P. viridiflava
BPL12 nc. Acinetobacter 100 MT322954 A. guillouize
guillouiae
BPL7 n.c. A. guillouiae 99.89 MG517433 A. guillouiae
BPL10 n.c. A. guillouiae 100 MH144279 A. guillouiae
BP5 n.c. A. guillouiae 99.76 MT322954 A. guillouiae
AM2 nc. Curtobacterium 99.8 MN826580 C. flaccumfaciens
flaccumfaciens
AML2 n.c. C. flaccumfaciens 100 MN826580 C. flaccumfaciens

n.i.: not identified; LOPAT analysis was performed but did not yield a conclusive outcome for species identification.
n.c.: LOPAT analysis not conducted; isolates were not fluorescent under UV light when grown on MBK medium.
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Gram-negative and fluorescent isolates were subjected to the LOPAT test, classifying
bacteria as Pseudomonas spp. Based on the LOPAT profiles (Levan production (L), presence
of oxidase (O), soft rot in potato (P), presence of arginine dihydrolase (A), and hypersensi-
tivity reaction in tobacco leaves (T)), the following species were identified: Pseudomonas
fluorescens (6 isolates) (Table 1), Pseudomonas syringae (13 isolates), Pseudomonas viridiflava
(1 isolate), and Pseudomonas marginalis (1 isolate). Three isolates did not match with the
LOPAT profile [43]. Subsequently, a subset of 17 isolates was sequenced to confirm their
identity. Finally, specific primers were used in the PCR assays to identify P. syringae pv.
actinidiae (Psa) and P. syringae pv. syringae (Pss), and P. viridiflava (Pv) (Tables 1 and 2).

2.2.3. Pathogenicity Test

Thirteen isolates identified as Pseudomonas syringae were selected to corroborate
their pathogenicity in excised kiwifruit leaves. Of the total isolates analyzed (n = 13)
(Supplementary data, Table S1), ten of them were pathogenic on excised kiwifruit leaves
(76.9%) after 7 days post-inoculation, causing necrotic lesions on inoculated leaves, and
15 days after inoculation, all the P. syringae were pathogenic in leaves. The isolate, identified
as P. viridiflava, did not show any lesions. The first symptoms appeared 5-7 days after inoc-
ulation. Infected leaves showed 3-7 lesions, which became red brown, with curling of the
leaf lamina. The bacteria were re-isolated from these lesions and identified as Pseudomonas
according to their morphology and fluorescence under UV light. Leaves inoculated with
water showed no symptoms.

3. Discussion

The relationship between lytic bacteriophages and pathogenic bacteria has been stud-
ied for a long time to control pathogen populations in different fields, primarily under
laboratory or greenhouse conditions [21,44-52]. Therefore, it is necessary to conduct studies
that help collect data on the use of phage cocktails in the field.

Applying phage formulations under field conditions has been challenging due to vari-
ous environmental factors that influence phage cocktail performance, such as temperature,
pH, and UV radiation [53]. Numerous bacteriophages have demonstrated significant po-
tential under laboratory conditions [1,35,38,42,54-57]; however, not all exhibit comparable
efficacy under field conditions, which has led to the development and evaluation of dif-
ferent types of formulations that aim to extend phage viability under field conditions [30].
The results obtained in this study align with previous analyses that guided the formulation
of tested phage cocktails [42,57]. Specifically, bacteriophages CHF1, CHF7, CHF19, and
CHE21 possess characteristics that enable the effective control of Pseudomonas syringae pv.
actinidiae (Psa) under in vitro, in vivo, and greenhouse-controlled conditions [42]. Our find-
ings complement previous work on P. syringae pv. actinidae, where phenotypic and genetic
variation were linked to pathogenicity and potential differences in phage susceptibility [12].
Consistent with phage selection principles [1], the in vitro and ex vivo efficacy of phage
d6 [34] and plant-level prophylactic models [37] support the feasibility of phage-mediated
biocontrol and highlight host range and application timing as critical determinants.

It is worth noting that Pss isolates may not be controlled by the phages used in this
study for the control of Psa; phages are generally very specific. However, a study conducted
by Amarillas et al. [58] (2020) reports that phages specific to Pss also have some, albeit
erratic, control over Ps. pv. tomato and, on the other hand, do not control Ps. pv. phaseolicola.
This aspect warrants further study by our group.

Trials conducted over both seasons highlighted one of the main challenges in con-
trolling this disease in Chile and other kiwifruit-producing countries: the resistance of
pathogens to copper-based or antibiotic products. Copper compounds are among the most
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widely used agents for managing Pseudomonas syringae pv. actinidiae (Psa), but their efficacy
remains limited because they mainly provide surface protection and do not prevent internal
colonization by pathogens [19]. In this study, conventional management practices exhibited
minimal or no control effects. This result is probably associated with the appearance of
resistance to copper or antibiotics in Psa [17-19].

Pseudomonas species such as Pss and Psa can be resistant or less sensitive to copper
and antibiotics, which may explain the lack of effectiveness of treatments carried out
by farmers. Other authors in Chile have not studied this aspect; however, reports by
Cordova et al. (2022) [59] confirm the presence of P. s. pv. tomato isolates resistant to copper
and streptomycin, although not to oxytetracycline. In this study, they also evaluate the
resistance of other isolated Pseudomonas species, such as P. fluorescens, P. marginalis, and
P. viridiflava, where isolates of these species were found to be highly resistant to copper
and streptomycin.

The trials were conducted in orchards where Psa had been previously detected; how-
ever, due to restrictions imposed by regulatory agencies, experimental Psa infection of
these crops was not possible. In this sense, the detection of Psa in samples obtained from
control treatments confirms the presence of this bacterium in these fields.

Among these bacterial isolates, it is noteworthy that both Psa and Pss demonstrated
virulence in our assays. Although Psa is recognized as the causal agent of bacterial cankers
in kiwifruit, similar symptoms have also been associated with Pss, including leaf wilt, cane
blight, dried bark, brown necrotic tissue, and rusty red exudate [60-62]. Furthermore, other
studies have reported frequent co-occurrence of P. syringae pv. syringae and P. viridiflava in
kiwifruit; however, their interactions remain poorly understood [63-65].

Considering this, it would be desirable to develop specific phages for Pss to increase
the reduction in kiwi foliar symptoms, or polyvalent cocktails able to combat different
phytopathogens associated with kiwifruit trees.

Nevertheless, phage therapy developed for Kiwifruit Bacterial Canker was effective in
reducing the disease, and this is the first report of its efficacy under field conditions at two
different locations and in two different seasons.

4. Materials and Methods
4.1. Fields Experiments

The trials were simultaneously implemented in two locations: the first field in Peumo,
O’Higgins Region, Chile, and the second in Yerbas Buenas, Linares, Maule Region, Chile.
The trials were conducted over two seasons (20192020 and 2020-2021) during the budding
and flowering (spring) stages, when there was a higher risk of infection. Due to regulatory
restrictions of the Agriculture and Livestock Service of Chile, Servicio Agricola y Ganadero
(SAG), which declared “Mandatory control of Psa pest in kiwi species” in all territory
from 2011 to 2020 [66], the orchards used for field trials were naturally infected with Psa;
however, both fields had positive records of Psa presence. The trials were performed in
blocks of commercial kiwifruit orchards (A. deliciosa var. Hayward) planted 5 x 2 m2.

4.2. Bacteriophage Formulation

Based on the results of previous research [12,42], the phages CHF1 (GeneBank
MN729595), CHF?7 (GeneBank MN729596), CHF19 (GeneBank MN729597), and CHF21
(GeneBank MN729598) were selected for this study (Table 3). These phages effectively con-
trolled the bacterium under laboratory and greenhouse-controlled conditions [42]. Phage
propagation was performed by mixing Psa strain 889 [12] in the exponential phase with
each phage separately (MOI 0.5) and incubating the mixture at 25 °C with constant shaking
for 5 h. To remove debris, lysates were centrifuged at 10,000 rpm for 20 min at 4 °C, and
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then filtered through a 0.22-um-pore-size filter and stored at 4 °C. The phage lysates were
precipitated with 10% (w/v) polyethylene glycol (PEG 8000) and 1 M NaCl overnight at
4 °C and then centrifuged (14,000 rpm for 10 min at 4 °C). The pellet was resuspended in
magnesium buffer (10 mM MgSQOy), and 1% chloroform was added. After centrifugation
(14,000 rpm for 10 min at 4 °C), the upper aqueous phase was stored at 4 °C. Phage titer
was determined using a double-agar plate assay [67]. The four phages were mixed in
equal proportions for the application, and excipients were added when specified. Different
formulations were used in each season to evaluate potential increases in effectiveness. The
composition of each formulation assayed in each season is presented in Tables 4 and 5.

Table 3. Genomic characteristics of Mix Chilean Psa phages used in treatments [42].

Phage Genome Size (pb) %GC ORFs ? Genus Identity (%) phiPSA2 P
CHF1 40.999 57.3 49 T7-like 94.0%
CHEF7 40.557 57.4 48 T7-like 96.4%
CHF19 40.882 57.3 48 T7-like 93.2%
CHF21 40.557 574 48 T7-like 93.8%

2, Number of ORFs found in each genome. . Psa phage genomes were aligned with phiPsa2 using Mauve.

Table 4. Details of foliar spray treatments in kiwifruit orchards in Peumo (O’Higgins Region) and
Linares (Maule Region), Chile, during the first trial season (2019-2020).

Code Treatment Composition Rate
TO Control Water -

Farmer’s management based on Copper sulfate; Streptomycin

T1 intercalary bactericides (25%), Oxytetracycline (3.2%), 60 g/100 L (m/v)
and co-formulants
. A mixture of four
* 6
T2 Phage formulation 1 Iytic bacteriophage 1 x 10° (PFU/mL)
T3 Phage formulation 2 * A mixture of four 1 x 107 (PFU/mL)

lytic bacteriophages

Intercalary application of
T4 bactericides and phage
Formulation 2

* Phage Formulation Mix compounds about four phages: CHF1 (MN729595); CHF7(MN729596);
CHF19(MN729597); CHF21(MN729598).

Copper sulfate, a mixture of four

. 7
lytic bacteriophage 60 g/100 L; 1 > 107 (PFU/mL)

Table 5. Details of foliar spray treatments in kiwifruit orchards in Peumo (O'Higgins Region) and
Linares (Maule Region), Chile, during the second trial season (2020-2021).

Code Treatment Composition Rate
T0 Control Water -

Farmer’s management based on Copper sulfate; Streptomycin (25%),

T1 intercalary bactericides Oxytetracycline (3.2), 60 g/100 L (m/v)
and co-formulants

T2 Only Milk low-fat milk 5% (m/v) 5kg/100 L (m/v)
. " Mixture of four lytic bacteriophages 7

T3 Phage formulation 1 and LB (Lysogeny Broth) Medium 1 x 107 (PFU/mL)
. Mixture of four lytic bacteriophages 1 x 10”7 (PFU/mL);

*
T4 Phage formulation 2 and low-fat milk 5% (m,/0) 5kg /100 L (m/0)

* Phage Formulation Mix compounds about four phages: CHF1 (MN729595); CHEF7(MN729596);
CHF19(MN729597); CHF21(MN729598).
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4.3. First Season 2019-2020 Field Trials

Treatments were distributed following a design of randomized complete blocks, using
three plants as experimental units and four blocks as replicates; 12 plants for each treatment
were assayed. In addition, between each treatment, one plant was left untreated and used
as a border barrier to isolate different treatments and replicates. Foliar applications of the
five treatments described in Table 4 were performed using a high-pressure cart sprayer
at 500 psi and 1.5 bar power (EISEN®, Eisen Electric Corporation, Lansing, MI, USA).
The phages were sprayed at two different concentrations quantified as plaque-forming
units per mL (PFU/mL): Formulation 1 with 1 x 10° (PFU/mL) and Formulation 2 with
1 x 10”7 (PFU/mL), at a rate of 1000 L/ha. The phage mix treatments were applied weekly
for two months (eight applications) during the spring.

For the conventional treatment associated with the farmer’s traditional management,
copper sulfate and a streptomycin-based bactericide were applied interspersed. In spring,
eight applications were made during budding, flowering, and fruit set, with a wetting of
1000 L/ha and a 7-to 10-day frequency, depending on the phenological stage. The control
plants received only a water spray.

4.4. Second Season 2020/2021 Field Trials

The trials were conducted by replicating the previous season’s model by incorporating
a new formulation into the phage-based treatments. All the formulations used during the
second season are listed in Table 5. The phage mix treatments were applied weekly for
two months (eight applications) during the spring season. The phages were sprayed at
1 x 107 (PFU/mL). The management of conventional farmers was also based on copper
sulfate and streptomycin-based bactericides in season 1. All treatments were performed
with a wetting rate of 1000 L/ha. Eight applications were made in the spring during
budding, flowering, and fruit sets, with a seven-day interval between each. The control
plants were treated with water only.

4.5. Effect of Treatments Under Kiwifruit Bacterial Canker in Field Trials

The effectiveness of the different treatments was evaluated by monitoring the symp-
toms of the Kiwifruit Bacterial Canker at 30, 45, and 90 days after the first application. Forty
leaves were randomly selected from each tree and evaluated for each treatment. The DI of
each leaf was evaluated using a damage scale for Psa proposed by Flores et al. [42] with
the following parameters 0: healthy leaf; 1: 1-4% of leaf area affected; 2: 5-10% of leaf
area affected with single spots and few merged spots; 3: 11-30% of leaf area affected with
merged spots; 4: 31-49% of leaf area affected, merged spots covering veins and increasing
in size; 5: >50% of leaf area affected (Supplementary data, Figure S1). Damage index (DI)
was calculated for each treatment using the following formula:

DI% = Y ((n*v)/(V*N))100)

where n = number of leaves per degree of attack; v = degree of attack (0, 1, 2, 3, 4, 5);
N = Maximum range of the scale; V = Total number of leaves evaluated. Statistical analysis
was performed using one-way ANOVA and the Kruskal-Wallis test (p < 0.05).

4.6. Epiphytic Bacterial Populations in First Season

Bacterial epiphyte populations were detected following the methodology described
by Purahong et al. [65]. Ten leaves were randomly selected and collected per sampling
unit (n = 3 trees) for a total of 40 leaves per control treatment (ten per replicate). Leaves
were taken before the treatment’s application and 30 and 60 days after the first application,
coinciding with the last application. The collected samples were transported from the
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field to the Laboratory of Microbiology (PUCYV) for processing in tight plastic bags and
inside a plastic cooler container at 5 °C. The 10 leaves sampled per replicate were pooled
for processing. Each leaf sample was washed with 15 mL of sterile MgSO,4 10 mM buffer
solution and 0.1% Tween 20™; washing was carried out for 30 min with gentle agitation
(100 rpm). Serial dilution and plate count (on King’s medium B) of the wash solution
were used to quantify the bacterial population. The plates were then incubated for 48 h at
25 °C. Subsequently, individual colonies were isolated, lyophilized, and stored at —20 °C
for subsequent identification. This isolation was only performed during the first year of the
trials (2019) because of the COVID-19 pandemic, and epiphytic population analysis could
not be achieved in the second season.

4.7. Detection and Identification of Pseudomonas spp.
4.7.1. Morphological, Biochemical, and Molecular Test

Various methods have been used to identify Pseudomonas spp. The purified and
lyophilized isolates were cultured on King’s B medium to verify their ability to produce
fluorescence under UV light [68]. Based on Lelliot and Stead [43], the LOPAT test (Levan
production (L), presence of oxidase (O), soft rot in potato (P), presence of arginine di-
hydrolase (A), and hypersensitivity reaction in tobacco leaves (T)) was performed on a
representative number of isolates of the Pseudomonas genus. These tests identified P. syringae
(possibly Psa and Pss) with a LOPAT profile (+---+). At the same time, P. viridiflava presents
a LOPAT profile (——+-+).

4.7.2. Bacterial DNA Extraction and Molecular Identification

Seventeen isolates (58.6% of the isolates) were cultivated for DNA extraction. Bacterial
DNA was extracted from individual colonies grown for 48 h at 25 °C in King’s medium B
using a Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA), according
to the manufacturer’s instructions. The DNA was used to sequence the 165 rDNA using
the universal primers 27F and 907R [69,70]. PCR was carried out in a 23 pL reaction
mixture containing 1 pL of genomic DNA (<1 ng), 12.5 puL of SapphireAMP® Fast PCR
Master Mix (2X) (Takara, Tokyo, Japan), and 0.4 uM of each primer. The amplification
program consisted of an initial denaturation at 94 °C for 1 min, followed by 30 cycles of
98 °C for 55,55 °C for 55, and 72 °C for 10 s. PCR products were separated by agarose
gel electrophoresis (1.5% agarose in 1x TAE buffer) and stained with GelRed (Biotium,
Fremont, CA, USA), and the bands were visualized under UV light (excitation at 256 nm).
PCR products were sent to Macogen (Seoul, Republic of Korea) for sequencing, and the
sequences were processed using the Geneious R10 program. The BLAST 2.17.0 tool was
used to establish the identities of the sequenced isolates. PCR using specific primers for
P. s. pv. actinidae were obtained through PCR with PsaF- and PsaR-specific primers [71],
B1 and B2 specific primers for the syrB gene of Pss [72], and PsV-F and PsV-R primers
specific for P. viridiflava [73]. In all cases, the PCR reactions were performed in a SureCycler
8800 thermal cycler (Agilent Technologies, Santa Clara, CA, USA) using Sapphire Amp
Fast PCR Master Mix (Takara Bio, Shiga, Japan). Each reaction was carried out in a final
volume of 25 pL, containing 2 pL of genomic DNA (<1 ng), 11.85 puL of SapphireAMP®
Master Mix (2X) (Takara, Tokyo, Japan), and 0.5 uM of each primer. The amplification
program consisted of 35 cycles of denaturation at 94 °C for 1.5 min, annealing at 60 °C
for 1.5 min, and extension at 72 °C for 3 min, followed by a final elongation at 72 °C for
10 min. PCR products were separated by agarose gel electrophoresis (1.5% agarose in
1x TAE buffer) and stained with GelRed (Biotium), and the bands were visualized under
UV light (excitation at 256 nm).
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4.7.3. Pathogenicity Test

Based on the protocol of Alimi et al. [73], a pathogenicity test was carried out on
the leaves of A. deliciosa Hayward. Kiwi leaves were obtained from a healthy nursery
plant, 20 mL of bacterial suspensions of each isolate adjusted to 1 x 10’ CFU/mL were
sprayed on the leaves using three leaves per bacterium as replicates. Controls were sprayed
with sterile distilled water. Treated leaves were kept at 20 °C in humid plastic trays for
15 days. Symptoms were observed 7 and 15 days after inoculation. Bacteria were re-isolated
after necrotic spots appeared, and colonies were identified morphologically by Gram
staining and fluorescence using UVA (320 nm), fulfilling Koch'’s postulates (Supplementary
Data, Table S1).

4.8. Data Analysis

Analysis of variance (ANOVA) was conducted to evaluate the significance of the treat-
ment effects. Before the analysis, assumptions of normality and homogeneity of variances
were verified using the Shapiro-Wilk and Levene’s tests, respectively, implemented in the
InfoStat software version 2017 [74]. Post hoc comparisons among means were performed
using Tukey’s HSD test at the 5% significance level. Graphical representations were gener-
ated using the RStudio Posit Team software 2025. Error bars in the figures indicate standard
deviations, and different letters above the bars denote statistically significant differences
among treatments.

5. Conclusions

Field trials conducted over two consecutive seasons in Linares and Peumo support the
efficacy and sustainability of bacteriophage-based formulations for controlling Pseudomonas
syringae pv. actinidiae (Psa) in kiwifruit. The results show that bacteriophage formulations
consistently reduced the damage index (DI%), even surpassing copper treatments, at least
in one evaluation in three of the four trials conducted.

Identification tests performed on the isolates obtained confirmed the presence of
strains of the Pseudomonas syringae complex, including P. syringae pv. actinidiae, P. syringae
pv. syringae, and P. viridiflava. These findings validated the natural presence of pathogens
in the field, supporting the appropriateness of the trial conditions. Pathogenicity tests
confirmed that 76.9% of P. syringae isolates were virulent, generating necrotic lesions on
plants 5-7 days after inoculation.

Together, these results support the use of phage-based formulations as specific, ef-
fective, and environmentally friendly tools for the integrated management of Kiwifruit
Bacterial Canker.

6. Patent

KIWIPHAGE formulation, based on four bacteriophages, was entered into the IN-
API registry for intellectual protection of this technology. Chilean Patent Application
No. 2021-1727. The registration number is 68.232, under the title “Composicién antimicro-
biana para controlar el cancro bacteriano del kiwi”.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/antibiotics14101023/s1, Figure S1: Damage scale for kiwifruit
leaves from Flores et al. [42] with the following parameters 0: healthy leaf. Table S1: Pathogenicity
test performed with Pseudomonas syringae.
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