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Abstract
Main conclusion  This review discusses the molecular modifications of grapevines by arbuscular mycorrhizal fungi, 
increasing anthocyanins and other phenolic molecules, potentially improving wine quality and plant stress tolerance.

Abstract  Grapevines are naturally associated with arbuscular mycorrhizal fungi (AMF). These fungi, as obligate symbionts, 
are capable of influencing molecular, biochemical, and metabolic pathways, leading to alterations in the concentrations of 
various molecules within the host plant. Recent studies have addressed the transcriptomic and metabolic modifications trig-
gered by AMF in grapevines. These AMF-induced alterations are involved in cell transport, sugar metabolism, plant defense 
mechanisms, and increased tolerance to both biotic and abiotic stressors. Notably, the shikimate pathway exhibits heightened 
activity following AMF inoculation in grapevines, resulting in the accumulation of anthocyanins, flavonols, phenolic acids, 
and stilbenes. Phenolic compounds are the main metabolites influencing grape and wine quality attributes, such as color, fla-
vor, and potential health benefits. This review aims to provide an updated overview of current research on the transcriptomic 
and metabolic aspects of AMF–grapevine interactions, focusing on their impact on plant performance and quality traits. 
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structures, particularly highly branched hyphae known as 
arbuscules. These arbuscules serve as the primary sites for 
the symbiotic exchange of nutrients between plants and 
fungi (Parniske 2008).

Studies have indicated that AMF play a role in enhancing 
plant nutritional status, promoting growth, and bolstering 
resistance to various stresses (Hao et al. 2012; Trouvelot 
et al. 2015). However, the impact of this symbiotic relation-
ship can vary based on factors, such as the specific grapevine 
cultivar, the composition of AMF communities involved, 
and the type of AMF inoculum utilized (Antolin et al. 2020; 
Moukarzel et al. 2022). These variations highlight the com-
plexity of the interactions between grapevines and AMF, 
demonstrating that the outcomes of this symbiosis can be 
influenced by multiple factors. Despite the potential impact 
of AMF diversity influenced by green cover species (Bowles 
et al. 2016), evidence shows that AMF benefits predomi-
nantly emerge from controlled environments, often utilizing 
specific AMF inoculants. Under field conditions, outcomes 
related to plant performance tend to be less consistent. This 
inconsistency is attributed to the intricate nature of environ-
mental interactions, which adds complexity to the assess-
ment of the effects of AMF on host plants (Rosa et al. 2020). 
AMF enhance nutrient uptake and promote plant growth 
across various commercially significant grapevine cultivars 
and rootstocks (Trouvelot et al. 2015). Furthermore, AMF 

Introduction

Grapevine is a perennial woody plant, considered one of the 
most economically important crops in the world, encompass-
ing a global cultivated area spanning 7.3 million hectares, 
which includes the cultivation of both wine and table grapes 
(OIV 2021). Various sustainable practices have been incor-
porated into vineyards to minimize environmental impacts 
(Cataldo et al. 2021). These environmentally friendly prac-
tices include the use of beneficial microorganisms, which 
have been extensively researched across various crops, 
with the aim of increasing yield and nutritional quality, and 
mitigating the effects of both biotic and abiotic stresses in 
the context of climate change (Cataldo et al. 2021; Vega-
Celedon et al. 2021; Vidal et al. 2022; Larach et al. 2024). 
Among the beneficial microorganisms, arbuscular mycor-
rhizal fungi (AMF) are obligate biotrophs that belong to the 
phylum Glomeromycota and form one of the most wide-
spread symbiotic associations with plant roots (Schüβler 
et al. 2001; Tedersoo et al. 2018). This symbiosis is esti-
mated to be present in 70–90% of terrestrial plants (Smith 
and Read 2008). AMF engage with plant roots, furnishing 
the host plant with water and essential minerals, whereas 
plants reciprocate by providing fixed carbon to the fungi 
(Harrison 2005). Within this symbiotic relationship, AMF 
colonize cortical cells, establishing intricate intracellular 
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have been observed to influence both primary and second-
ary metabolism in host plants, leading to increased levels 
of sugars, amino acids, alkaloids, terpenoids, and phenolic 
compounds. Even in cases where there may not be a dis-
cernible impact on grapevine growth, alterations in metabo-
lite concentrations have been detected (Torres et al. 2019). 
This highlights the intricate ways in which AMF may affect 
grapevines, potentially influencing various aspects of their 
physiology and biochemistry.

Grapevines generate a wide spectrum of metabolites that 
are crucial for various aspects of plant physiology, defense 
mechanisms, and inter-plant communication. These metab-
olites also serve as protective agents against various abi-
otic stresses, such as drought, radiation, high temperatures, 
and oxidative damage (Ferrandino et al. 2023). Although 
diverse metabolites are continually produced throughout 
the plant's life cycle, under environmental stress, plants 
may trigger de novo synthesis or elevate the production of 
specific compounds (Holopainen and Gershenzon 2010; 
Yang et al. 2021). This adaptive strategy allows grapevines 
to adjust their metabolic pathways in response to changing 
environmental conditions, thereby enhancing resilience and 
survival under challenging circumstances. Stress signals are 
recognized by plant cell receptors, which activate diverse 
transcription factors, and therefore, downstream defense 
gene expression (Jan et al. 2021). The specific mechanisms 
through which AMF regulate metabolite production in 
grapevines remain largely elusive and are yet to be compre-
hensively understood.

This study aims to review the influence of AMF–grape-
vine colonization on gene regulation and metabolite pro-
duction. Additionally, this study discusses the involvement 
of these metabolic shifts in grapevines’ resilience to biotic 
and abiotic stresses, potentially impacting grape and wine 
quality.

Effect of AMF on grapevine transcriptomics

Arbuscular mycorrhizal (AM) colonization initiates a cas-
cade of molecular events within grapevines, resulting in 
notable changes in gene expression patterns. These altera-
tions activate pathways associated with plant defense mecha-
nisms and the cell transportome (Table 1). A recent study 
by Goddard et al. (2021) provided compelling evidence of 
the systemic impact of AM symbiosis on grapevines. Their 
research revealed significant transcriptomic shifts occurring 
not only in the roots but also in the leaves of AM plants. This 
systemic effect underscores the comprehensive nature of the 
molecular responses triggered by AM symbiosis throughout 
the grapevine, highlighting the intricate interplay between 
root and shoot tissues in mediating plant response to AM 
colonization. These findings deepen our understanding of 

the molecular mechanisms underlying the symbiotic rela-
tionship between grapevines and AMF, offering valuable 
insights into how these interactions influence plant physiol-
ogy, defense mechanisms, and overall health. Soportes et al. 
(2023) analyzed 10 grapevine rootstocks and identified over 
300 genes regulated by arbuscular mycorrhizal (AM) sym-
biosis across all rootstocks. Furthermore, by comparing this 
gene set to their Medicago truncatula homologs, the authors 
found that more than 97% was expressed in at least one myc-
orrhizal transcriptomic study in Medicago, highlighting a 
shared subset of AM-responsive genes.

Balestrini et  al. (2017) reported that diverse nutri-
ent transporter genes are upregulated in roots after AMF 
inoculation. Nodulin genes, previously recognized as being 
regulated by AMF, exhibit heightened expression levels 
in grapevine, as demonstrated by Balestrini et al. (2017). 
Moreover, it has been documented that AMF enhance phos-
phate uptake by upregulating the expression of phosphate 
transporter 1 (PHT1) family genes (Rausch et al. 2001; 
Harrison et al. 2002). Notably, putative phosphate trans-
porter genes VvPHT1-1 and VvPHT1-2 were found to be 
significantly induced in the roots of AM grape rootstock 
41 B MGt, whereas transcripts were either low or absent in 
non-AM plants (Valat et al. 2017). In addition, VvPT4 and 
VvPT8 were consistently regulated in ten grapevine root-
stocks (Soportes et al. 2023). Nerva et al. (2023) reported 
two nitrate transporters, VvNRT1.3 and VvNRT2.4, exhib-
iting distinct patterns of expression in response to AMF 
and d-glucose, used as a colonization inducer. VvNRT1.3 
showed an increased expression in AMF-inoculated plants 
compared to all other treatments, while VvNRT2.4 was 
primarily influenced by the application of the d-glucose 
inducer.

AMF also influence sugar metabolism in host plants. In 
grapevines, 12 genes belonging to the Sugars Will Eventu-
ally be Exported Transporters (SWEET) family have been 
identified (Denancé et al. 2014). The SWEET protein family 
serves as both intra- and intercellular transporters of sugars 
and plays diverse roles in physiological functions, such as 
facilitating sucrose transport for phloem loading, regulating 
seed development, contributing to abiotic stress tolerance, 
and aiding in reproductive organ development (Sosso et al. 
2015; Li et al. 2020; Huang et al. 2022; Zhu et al. 2022).

In a study conducted by Goddard et al. (2021), no nota-
ble changes were observed in the expression levels of the 
VvSWEET4 and VvSWEET12 genes within the roots of AM 
grapevines when compared to non-AM plants. However, in 
leaves, the expression of VvSWEET17c transcripts decreased 
in AM-colonized plants. These results are in contrast with 
those observed in potato roots, where major changes were 
found in SWEET gene expression after inoculation with 
Rhizophagus irregularis (Manck-Götzenberger and Requena 
2016). Although SWEET genes have been implicated in AM 
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symbiosis, their precise role in this context remains unclear 
(Manck-Götzenberger and Requena 2016). The gene expres-
sion pattern of the sucrose transporter (SUT), which is 
involved in long-distance sugar transport in plants, has also 
been shown to be affected by AMF. This may be explained 
by the fact that AMF enhance the redirection of sucrose from 
the leaves to the roots (Roth and Paszkowski 2017). Dur-
ing the initial stages of colonization, AM M. truncatula and 
tomato plants exhibited an upregulation of SUT genes in 
both leaves and roots (Boldt et al. 2011; Doidy et al. 2012). 
Nevertheless, there were no differences in SUT expres-
sion in the leaves of AM Vitis vinifera cv. Gewurztraminer 
was observed, while in roots, downregulation was reported 
compared to control plants (Goddard et al. 2021). Similarly, 
studies have noted a heightened concentration of sucrose in 
roots during the early phases of AM colonization. However, 
in grapevines, a decrease in sucrose concentration has been 
observed at the onset of AMF inoculation (Schubert et al. 
2004; Kaur and Suseela 2020; Goddard et al. 2021). These 
contradictory results may be explained by a large number 
of woody species that passively load solutes by maintain-
ing high concentrations of sucrose in the mesophyll cells 
(Turgeon 2010).

Regarding plant defense, AM colonization upregulates 
defense-related genes, thereby increasing resistance to biotic 
stress. Hao et al. (2012) reported that colonization of the 
rootstock SO4 by Glomus intraradices was associated to 
an improved protection against the nematode Xiphinema 
index. The AM fungus strongly induced the expression of 
chitinase 1b, glutathione S-transferase, stilbene synthase 1, 
pathogenesis-related (PR) protein 10, 5-enolpyruvyl shiki-
mate-3-phosphate synthase, a heat shock protein 70-interact-
ing protein, and miscellaneous RNA, thereby enhancing the 
protection of grapevines. Li et al. (2006) observed increases 
of VCH3 (class III chitinase gene) expression in V. amuren-
sis colonized with G. versiforme, which conferred resist-
ance against the root-knot nematode Meloidogyne incognita. 
Previous studies have demonstrated that chitinases play an 
important role in plant defense and that their expression is 
modulated by AMF (Salzer et al. 2000, 2004; Liu et al. 2003; 
Schäfer et al. 2012). PR proteins are another group of plant 
defense proteins that are induced after pathogen infection 
(Sels et al. 2008). In grapevines, PR6 bis, PR7, and PR7 bis 
genes were highly expressed in the roots of AM plants (God-
dard et al. 2021). PR6 bis belongs to a subclass of serine pro-
teinase inhibitors, whereas PR7 and PR7 bis belong to the 
subtilisin-like serine protease (subtilase) family (Sels et al. 
2008; Figueiredo et al. 2016). Research indicates that the 
expression of subtilase genes is boosted by AMF across vari-
ous plant species, aiding the development of AM symbiosis 
(Taylor and Qiu 2017). Additionally, inhibition of certain 
subtilases has been found to decrease AM fungal structures 
in Lotus japonicus roots (Takeda et al. 2009).

It has been widely reported that AMF induce plant 
priming for enhanced defense, increasing the transcription 
of defense-related genes in aerial parts (Pozo and Azcón-
Aguilar 2007; Pozo et al. 2009; Song et al. 2019). Several 
studies have shown that AMF can induce the expression of 
genes involved in the biosynthesis of terpenoids, polyphe-
nols, and diverse fatty acid-derived alcohols and aldehydes. 
Bruisson et al. (2016) showed that stilbenoids, such as res-
veratrol, were slightly modified in grapevine leaves of AM-
colonized plants; however, enhancement in the expression 
of phenylalanine ammonia lyase (PAL), stilbene synthase 
(STS), and resveratrol O-methyltransferase (ROMT) was 
also observed. Conversely, AM-colonized grapevines, when 
inoculated with the pathogens Plasmopara viticola and Bot-
rytis cinerea, exhibited a significant increase in the concen-
tration of various stilbenoids compared to non-AM plants. 
This suggests that AMF may sensitize grapevines to mount 
a stronger defense response. Enzymes, such as PAL, STS, 
and ROMT, which are involved in the shikimate pathway 
(SK), have been associated with plant defense mechanisms. 
Their expression has been shown to increase under a patho-
gen attack in diverse grapevine cultivars, including Cabernet 
Sauvignon, Chardonnay, Chasselas, Pinot Noir, and Riesling 
(Bézier et al. 2002; Kortekamp 2006; Mohamed et al. 2007; 
Perazzolli et al. 2012; Dufour et al. 2013; Bruisson et al. 
2016).

Regarding abiotic stress, studies on grapevines have 
indicated that AMF enhance tolerance to drought stress by 
regulating the expression of specific genes. For instance, 
Ye et al. (2023) observed that a mixed inoculum of several 
AMF species increased the expression of 9-cis-epoxycarot-
enoid dioxygenase (NCED), abscisic acid 8’-hydroxylase 4 
(CYP), and beta-glucosidase (BG) genes in grapevine cv. 
Ecolly under drought conditions. VvNCED, VvCYP, and 
VvBG are involved in abscisic acid (ABA) metabolism, 
which helps reduce water loss and increase drought toler-
ance. They also noted that AMF upregulated the expres-
sion of δ1-pyrrolin-5-carboxylate synthetase (P5CS) and 
tonoplast intrinsic proteins (TIP). P5CS serves as a piv-
otal enzyme in proline and ornithine synthesis, whereas 
TIPs are aquaporins typically localized to the vacuolar 
membrane, facilitating water transport across this subcel-
lular compartment (Gattolin et al. 2010; Pérez-Arellano 
et al. 2010). Upregulation of these genes has also been 
observed in other AM-colonized plant species, confer-
ring a higher tolerance to drought and salt stress (Porcel 
et al. 2004). In addition, it was recently reported that AMF 
protect grapevines from high temperatures. Inoculation 
with Funneliformis mosseae or R. irregularis affected the 
expression of diverse stress-inducible miRNAs, suggesting 
that mycorrhizal colonization may result in enhanced gene 
regulation in response to heat stress. In particular, plants 
inoculated with R. irregularis showed a higher number 
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of differentially expressed miRNAs in grapevines treated 
at 40 °C (Ye et al. 2023). Some of these miRNAs belong 
to the miR156/miR529/miR535 superfamily and may be 
involved in the modulation of plant growth and develop-
ment (Wang et al. 2015; Ye et al. 2023).

Despite progress made in understanding the molecular 
and metabolic changes triggered by AMF in grapevines, 
several key questions remain. For instance, although genes 
related to nutrient transport and defense have been identi-
fied, the mechanism by which these genes interact within 
complex regulatory networks still needs to be clarified. 
The contrasting patterns observed in sugar transporters 
and metabolites between grapevines and herbaceous spe-
cies also suggest that the influence of AMF may vary con-
siderably depending on the life form or tissue type of the 
plant. Additionally, the precise conditions under which 
AMF-driven metabolic shifts enhance stress tolerance, 
improve grape quality, and yield consistent outcomes in 
different environmental and phenological contexts are yet 
to be determined. Addressing these open questions will 
deepen our understanding of AMF–grapevine symbiosis, 
ultimately guiding more effective and sustainable manage-
ment strategies in viticulture and other perennial cropping 
systems.

Metabolic changes in grapevine 
by mycorrhizal fungi

The effect of AMF on primary and secondary metabolism 
in host plants has been thoroughly investigated. Numer-
ous studies have indicated that AMF increase the levels of 
various metabolites, with a particular emphasis on those 
of special interest for human health (Kapoor et al. 2017; 
Kumar et al. 2021). An increase in metabolite content 
might be linked to improved nutrient acquisition by AM 
fungal hyphae, particularly phosphorus (P), because many 
secondary metabolites are synthesized by phosphate-
dependent enzymes. However, AMF may not only induce 
metabolic pathways through heightened P absorption 
but also by boosting enzyme activity and stimulating the 
production of plant growth regulators or elicitors. These 
compounds can trigger intracellular signaling cascades, 
ultimately enhancing the production of various molecules 
(Kapoor et al. 2017; Welling et al. 2016). For instance, 
Goddard et al. (2021) observed an increased concentration 
of jasmonic acid (JA) and salicylic acid (SA) in the leaves 
of mycorrhizal grapevines inoculated with R. intraradi-
ces, showing activation of the lipoxygenase (LOX) and 
shikimate (SK) pathways. Additionally, F. mosseae has 
been shown to enhance the production of elicitors, such as 
(E)-2-hexenal, a green leaf volatile, and methyl salicylate, 

a volatile compound synthesized from salicylic acid in the 
leaves of V. vinifera cv. Sangiovese, which may be associ-
ated with a higher resistance of grapevines to unfavorable 
conditions (Velásquez et al. 2020a). In contrast, Goddard 
et al. (2021) reported that inoculation with the AM fungus 
R. irregularis did not affect the concentrations of JA and 
JA-isoleucine (JA-Ile) in AM-colonized grapevine roots, 
while a significant reduction in SA was observed.

AMF have been suggested to have an impact on the 
mevalonate/2-C-methyl-D-erythritol 4-phosphate pathway, 
increasing the expression of deoxyxylulose 5-phosphate 
synthase, geranyl diphosphate synthase, and diverse ter-
pene synthase genes, which leads to a higher biosynthe-
sis of terpenic compounds (Welling et al. 2016; Kapoor 
2017). Although it has been reported that AMF enhances 
the synthesis of terpenoids in host plants, most studies 
performed in grapevines have shown a significant increase 
in the content of phenolic compounds, which are synthe-
sized through the SK pathway (Table 2). Velásquez et al. 
(2020b) reported that F. mosseae induced only terpenes in 
V. vinifera cv. Cabernet Sauvignon root tissue showed a 
significant increase in terpene alcohols in the p-menthane 
series.

Phenolic compounds are metabolites of special interest 
in grapevines because of their importance in environmen-
tal stress alleviation as well as in the quality of grapes 
and wine (Merkyté et al. 2020). Phenols have been shown 
to be highly induced by AMF in grapevine leaves and 
fruit (Krishna et al. 2005; Karoglan et al. 2021; Bruisson 
et al. 2016). Among phenolic compounds, flavonoids are 
commonly reported to be affected by AM colonization. 
Karoglan et al. (2021) observed that diverse anthocyanins 
and flavanols significantly increased in the berry skin of 
AMF-inoculated plants in a two-year experiment. Simi-
larly, Torres et al. (2016) found that AMF increased total 
anthocyanin content; however, contradictory results were 
observed. Ganugi et al. (2023) used seven different mycor-
rhizal inocula and reported no significant changes in the 
levels of anthocyanins in any treatment of non-mycorrhizal 
plants. Antolin et al. (2020) analyzed metabolic responses 
in diverse ancient grapevine varieties to AMF coloniza-
tion, finding dissimilar responses regarding the phenol 
content. The authors observed that changes in phenolic 
compounds are not only dependent on AM colonization 
but also on the interaction of AMF × grapevine variety/
cultivar. For instance, Nerva et al. (2023) reported that 
mycorrhizal treatments increased the stilbene viniferin 
content in the leaf tissue of cv. Galera grafted onto 1103P 
rootstock, whereas no changes were observed when cv. 
Galera was grafted onto the SO4 rootstock. Additionally, 
analysis of Malvasia di Candia Aromatica berry revealed 
significant differences in phenolic acids and stilbenes 
depending on the mycorrhizal inoculum used (Ganugi 
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et al. 2023). Quercetin is another subclass of flavonoids 
that has been shown to be modified in response to AMF. 
Single and mixed inoculations with G. mosseae, G. fascic-
ulatum, and G. intraradices showed to increase the content 
of quercetin in V. vinifera cv. Khalili and Keshmeshi leaf 
tissues, whereas in cv. A decreased concentration of Agari 
was observed (Eftekhari et al. 2012a).

Regarding primary metabolites, it has been reported that 
both chlorophyll a and b, as well as the total chlorophyll 
content, are highly affected by AMF (Krishna et al. 2005; 
Cetin et al. 2014). However, Eftekhari et al. (2012b) did not 
observe an increase in all treatments, showing a different 
effect depending on the cultivar or on the type of mycor-
rhizal inoculum (single or mixed inoculum); nevertheless, 
the authors suggest that in grapevines, AMF increase or at 
least maintain chlorophyll content. In addition, research 
has revealed elevations in the concentrations of mono- and 
disaccharides, amino acids, and various organic acids across 
a diverse range of AM-colonized host plants, with respect to 
non-colonized plants. Specifically, AMF have been observed 
to induce higher levels of total soluble sugars in grape-
vine leaf tissue and berries (Eftekhari et al. 2012b; Cetin 
et al. 2014; Torres et al. 2019; Antolin et al. 2020, Ganugi 
et al. 2023). Nevertheless, inoculation with R. intraradices 
reduced certain sugars such as sucrose in the leaves of V. 
vinifera cv. Gewurztraminer. These results may be associ-
ated with increases in hexose transport from leaves to fruit in 
AM-colonized plants, as suggested by Zouari et al. (2014), 
in which one hexose transporter gene with high sequence 
similarity to a glucose/H+ symporter was upregulated by F. 
mosseae in tomato plants, strongly inducing fruit maturity. 
Similarly, the concentration of glucose in grape berries was 
significantly higher in AM grapevines than in non-colonized 
grapevines (Antolin et al. 2020).

AM colonization plays an important role in nutrient 
acquisition, including nitrogen, which has been proven to 
favor the synthesis and transport of amino acids to the aerial 
parts. For example, in tomato fruits, Zouari et al. (2014) 
observed that AMF upregulated genes associated with amino 
acid production, whereas Salvioli et al. (2012) reported an 
increased content of glutamine and asparagine in AM-colo-
nized plants, potentially linked to elevated amide production. 
Torres et al. (2019) found that AMF increased the levels of 
various amino acids in V. vinifera cv. Tempranillo, specifi-
cally phenylalanine, a precursor of phenolic compounds, was 
significantly enhanced, which could contribute to the higher 
total phenol content.

Despite these advancements, key questions remain 
regarding the precise mechanisms and broad consistency 
of AMF-driven metabolic changes in grapevines. For 
instance, although AMF are known to enhance the synthe-
sis of various metabolites, including phenolics, terpenoids, 
amino acids, and sugars, the variability in responses across 

cultivars, rootstocks, and inoculum types underscores the 
complexity of these interactions. It remains unclear why cer-
tain phenolic compounds or primary metabolites respond 
positively to AM colonization in some grapevine varieties, 
while remaining unchanged or even decreasing in others. 
Likewise, the relative contribution of enhanced nutrient 
uptake, altered enzyme activity, and induction of signaling 
molecules to these metabolic shifts requires further elucida-
tion. Disentangling the roles of different AM fungal spe-
cies and understanding the environmental conditions under 
which their benefits are maximized will be crucial. More 
research is needed to determine how these metabolic adjust-
ments translate into long-term improvements in grape and 
wine quality under field conditions. Ultimately, addressing 
these open questions will help refine management strategies 
and optimize the use of AMF in viticulture.

Role of AMF‑induced metabolites 
in the tolerance to abiotic stress

Abiotic stress leads to economic losses in viticulture. Grape-
vines are highly affected by drought, salinity, and heavy 
metals, causing serious problems in growth and productiv-
ity (Cataldo et al. 2022). Most wine-growing regions are 
located in Mediterranean and semi-arid climates, char-
acterized by warm and dry summers, where grapevines 
are regularly exposed to saline soils, prolonged periods 
of drought, high radiation, and increase in temperature 
(Lionello et al. 2006; del Pozo et al. 2019). Climate change, 
driven by rising greenhouse gasses, is causing tempera-
ture increase (2.2–3.7 °C by 2100) and elevated CO₂ levels 
(669–935 ppm), interacting with water deficits (IPCC 2013). 
These abiotic stresses, including reduced water availability, 
extreme drought, and rising temperatures, along with biotic 
stress from pathogens, threaten the viability of Vitis vinifera 
(OIV, 2019; Aguilera et al. 2023). For instance, the Medi-
terranean areas of Europe face severe impacts, with rainfall 
expected to decrease by 4–22% and heatwaves becoming 
more frequent. Such changes affect phenology, development, 
physiological responses, grape yield, and quality, thereby 
compromising viticulture in major wine-producing countries 
(IPCC 2013; OIV, 2019, Aguilera et al. 2021). The appli-
cation of AMF enhances vine tolerance to abiotic stresses, 
such as drought and high temperatures, and improves water 
potential, stomatal conductance, and CO₂ assimilation. Nev-
ertheless, the effect of increased temperature on AMF is not 
yet clear as some studies have reported an increase in myc-
orrhizal abundance, while others have observed a decrease 
in colonization levels (Torres et al. 2018b, Aguilera et al. 
2021). Kozikova et al. (2024) analyzed the role of AMF in 
improving the resilience of two grapevine varieties, Tempra-
nillo and Cabernet Sauvignon, to climate change conditions, 
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which included different concentrations of CO2 and irriga-
tion levels, and temperature. The authors observed that 
drought reduced leaf conductance and transpiration in both 
varieties, especially in mycorrhizal plants, but photosynthe-
sis remained stable, thereby improving water use efficiency 
WUE. AMF alter stomatal density and size, enhancing adap-
tation to water deficit, particularly under elevated CO₂ and 
temperature conditions.

Abiotic stressors prompt plants to accumulate reactive 
oxygen species (ROS), leading to oxidative damage. ROS 
consist of a group of molecules, such as OH-, H2O2, ∙O2

−, 
and O2−, which cause the transfer of high-energy electrons 
to molecular oxygen, resulting in higher membrane perme-
ability and loss of ions from the cells (Gill and Tuteja 2010). 
Excessive ROS generation disturbs cell functions by attack-
ing several biomolecules, such as nucleic acids, proteins, 
and membrane lipids (Foyer and Noctor 2005). It has been 
reported that AMF may enhance plant performance under 
unfavorable conditions, decreasing the rates of the negative 
impacts of abiotic stress (Begum et al. 2019). AMF have 
been shown to protect plants under adverse conditions by 
improving nutrient acquisition, increasing water uptake, 
maintaining osmotic equilibrium, enhancing photosynthetic 
efficiency, and preventing damage by ROS (Begum et al. 
2019; Evelin et al. 2019; Santander et al. 2020).

Plants protect themselves from ROS through enzymatic 
and non-enzymatic mechanisms. The enzymatic system con-
sists of higher activities of superoxide dismutase, peroxidase, 
catalase, ascorbate peroxidase, and glutathione reductase. 
Non-enzymatic antioxidant molecules include acetylsalicylic 
acid, glutathione, carotenoids, and α-tocopherol, which par-
ticipate in ROS quenching (Gill and Tuteja 2010). Several 
studies have shown that AMF enhance the activity of antiox-
idant enzymes and molecules that alleviate oxidative stress 
(Evelin and Kapoor 2014). Particularly in grapevines, Torres 
et al. (2016) observed an increased total antioxidant capac-
ity in grapevines inoculated with AMF, which may prevent 
the oxidation of lipids, proteins, and nucleic acids, while 
Krishna et al. (2005) showed that AMF increased the content 
of total carotenoids and total phenolic compounds by up 
to 800% in leaves. Specific groups of phenolic compounds, 
such as flavanols and anthocyanins, were usually increased 
in grapevines inoculated with AMF (Table 2).

Flavonols are metabolites that are typically associated 
with UV-B irradiance protection in plants (Ferreyra et al. 
2012). Accumulation of flavonols under UV-B irradia-
tion has been reported in diverse plant species, including 
Arabidopsis thaliana, Capsicum annuum, Ligustrum vul-
gare, Fragaria × ananasa, and V. vinifera (Mahdavian 
et al. 2008; Tattini et al. 2004; Berli et al. 2011; Xu et al. 
2017). Low levels of irradiation tend to increase flavonols 
such as kaempferol, whereas high levels of UV-B increase 
quercetin content, especially quercetin-3-O-galactoside 

and quercetin-3-O-glucoside (Takemura et al. 2009). This 
may be explained by the fact that quercetin, which has 
been increased in some grapevine cultivars inoculated with 
AMF, is dihydroxylated and kaempferol is monohydroxy-
lated. It has been reported that as the level of hydroxylation 
increases, the absorption of UV-B decreases (Lavola et al. 
1997). Furthermore, Agati et al. (2013) reported that light-
responsive dihydroxy flavonoids have a greater ability to 
quench ROS or inhibit their formation.

Phenolic compounds can also protect plants against 
potentially toxic elements (PTE). For instance, cadmium 
increased the concentrations of rutin and myricetin in Erica 
andevalensis and Prosopis farcta (Márquez-García et al. 
2012; Zafari et al. 2016), whereas copper mainly increases 
the concentration of 5-caffeoylquinic acid, orientin, and cya-
nidin-3-malonylglucoside (Vidal et al. 2020). Zafari et al. 
(2016) reported higher quercetin root exudates in maize 
plants exposed to aluminum. Similar results have also been 
observed in grapevine, where quercetin and kaempferol 
derivatives increased after treatment with titanium nano-
particles (Kőrösi et al. 2019). Flavonols may be involved in 
tolerance to PTE because of their ability to chelate metals 
and reduce toxicity in plant cells (Šamec et al. 2021).

It has been extensively documented that AMF enhance 
osmotic adjustment in plant cells (Santander et al. 2017; 
Vidal et al. 2022). Accumulation of proline and soluble 
sugars is frequently induced by mycorrhizal fungi, as 
well as by abiotic stresses, such as salt and drought stress 
(Garg and Baher 2013; Santander et al. 2019; 2020). Pro-
line plays a crucial role in scavenging ROS and stabilizing 
membranes, proteins, and DNA against oxidation induced 
by abiotic stress (Kaur and Asthir 2015). AMF may induce 
proline accumulation through various mechanisms, includ-
ing the upregulation of genes encoding enzymes, such as 
P5CS and glutamate dehydrogenase, as well as enhancing 
the activity of these enzymes. Additionally, it has been 
observed that AMF induce inactivation of proline dehy-
drogenase, an enzyme that participates in the degradation 
of proline (Abo-Doma et al. 2016). Regarding soluble 
sugars, it has been shown that glucose, sucrose, dextrin, 
and maltose play a key role in osmoprotection and as a 
source of carbon storage (Parvaiz and Satyawati 2008). 
Under abiotic stress, plants exhibit an accumulation of 
soluble sugars, a response that is amplified in AM-colo-
nized plants because of the enhanced photosynthetic effi-
ciency and increased activity of enzymes, such as α- and 
β-amylases, acid invertase, and sucrose synthase induced 
by AMF (Garg and Baher 2013; Yu et  al. 2015; Zhu 
et al. 2018). Notably, not all soluble sugars play identical 
roles in plant cell metabolism. For instance, glucose and 
sucrose serve as substrates for cellular respiration or act as 
osmolytes to maintain cell homeostasis (Gupta and Kaur 
2005), whereas fructose may be linked to the synthesis of 
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erythrose-4-phosphate, a precursor for lignin and phenolic 
compound production (Hilal et al. 2004).

Despite the progress made in characterizing AMF-
induced metabolic shifts that enhance grapevine tolerance 
to abiotic stress, numerous questions remain unanswered. 
Although it is clear that proline, soluble sugars, pheno-
lics, and flavonols contribute to osmoprotection and ROS 
mitigation, the precise regulatory networks linking these 
metabolites to improved stress resilience require clarifica-
tion. It is not fully understood how differing environmen-
tal variables or soil conditions influence AMF-mediated 
metabolic changes, nor is it clear why certain grapevine 
cultivars or rootstocks respond more robustly than others 
do. Moreover, the interplay between specific metabolites, 
such as quercetin, fructose, and proline, and particular 
stress conditions remains to be fully delineated. Another 
unresolved area is how these metabolic adjustments trans-
late into long-term improvements in vine health, yield, and 
fruit quality under actual vineyard conditions. Addressing 
these gaps will provide the knowledge required to harness 
AMF more effectively as a sustainable tool for viticulture 
under the increasing pressure of climate change.

Role of AM‑induced metabolites in biotic 
stress tolerance

AMF colonization enhances protection against patho-
gens in host plants, leading to a systemic effect known as 
mycorrhizal-induced resistance (MIR) (Pozo and Azcón-
Aguilar 2007; Jung et al. 2012). MIR may act on nema-
todes, herbivorous insects, and a wide range of pathogens, 
including fungi, bacteria, and viruses (Gehring and Ben-
nett 2009; Schouteden et al. 2015; Miozzi et al. 2019). It 
has been proposed that MIR suppresses the SA-depend-
ent defense pathway while inducing systemic priming of 
JA-dependent defenses (Pozo and Azcón-Aguilar 2007). 
Cameron et al. (2013) proposed that at early stages of col-
onization, the host plant recognizes microbe-associated 
molecular patterns from the AM fungus, triggering a series 
of signaling cascades, resulting in enhanced production 
of the plant defense hormone SA. However, it has been 
observed that AMF promote the production of ABA and 
JA in the colonized cells of the cortical root tissue (House 
et al. 2002). As ABA and JA can suppress SA-dependent 
defense pathways against biotrophic pathogens, AMF may 
induce the production of these phytohormones to establish 
a symbiotic association (Cameron et al. 2013). Particu-
larly in grapevines, Hao et al. (2012) observed that in SO4 
rootstock inoculated with R. intraradices BEG141, MIR 
offered protection against the ectoparasitic nematode X. 
index, reducing gall formation in roots and the number 
of nematodes in the surrounding soil. The authors also 

suggested that priming defense responses are translocated 
to non-AM tissues. In addition, MIR enhances the resist-
ance to oomycetes and fungal pathogens. For instance, 
pre-inoculation with AMF protects grapevines against P. 
viticola, while symptoms of root rot disease, caused by 
Armillaria mellea, slowed down compared to non-AM-
inoculated plants. This effect could be attributed to poly-
amine accumulation, which is implicated in the early sign-
aling processes of the tolerance increase of AM-colonized 
grapevines against the pathogen (Nogales et al. 2009). 
AMF have been demonstrated to affect the expression 
of pathogen effectors during grapevine infection. Cruz-
Silva et al. (2021) showed that pre-mycorrhizal inocula-
tion with AMF fungus R. irregularis alters the expression 
of several P. viticola effectors, namely PvRxLR28, which 
presented decreased expression. These findings indicate 
that pre-inoculating grapevines with AMF might hinder 
pathogen infections by potentially altering the expression 
of pathogenicity-related genes, supporting the idea that 
AMF can enhance plant resistance to grapevine diseases.

In contrast, Holland et al. (2019) reported that V. riparia 
cv. Riparia gloire rootstocks inoculated with R. irregula-
ris increased the abundance of the pathogen Ilyonectria 
liriodendra, and no effect on plant growth was detected. 
These results indicate that the protective effect may vary 
depending on the AM fungus-plant-pathogen interaction. 
Indeed, most studies have addressed the effect of AM sym-
biosis using single-species inoculation. Recently, Moukar-
zel et al. (2022) used whole AMF communities from New 
Zealand vineyards in young grapevine rootstocks, showing 
that AMF increases vine growth parameters while protect-
ing plants from black foot disease, decreasing severity by 
up to 50% compared to control plants.

Bruisson et  al. (2016) reported that R. intraradices 
enhanced the content of stilbenoids in grapevine, especially 
after infection with P. viticola. Stilbenoids are a class of 
phenolic compounds that are known to be induced by phy-
topathogens or herbivore attack and protect plants because 
of their toxic properties for plant enemies. Antipathogenic 
effects include antibacterial, antifungal, insecticidal, and 
nematicidal properties (Valletta et al. 2021). Vannozzi et al. 
(2018) documented increases in transcript levels of stilbene 
synthases in grapevine following wounding. Moreover, they 
observed upregulation of WRKY and R2R3-MYB transcrip-
tion factors. Specifically concerning WRKY transcription 
factors, VviWRKY03, VviWRKY24, VviWRKY43, and Vvi-
WRKY53 were identified as being involved in the regula-
tion of the stilbene biosynthetic pathway. Nerva et al. (2023) 
conducted a two-year greenhouse experiment to investigate 
how AMF mitigate virus-induced oxidative stress in grape-
vine. The results revealed that AMF inoculation reduced 
the levels of ascorbate and superoxide dismutase, indicating 
diminished activation of the ascorbate–glutathione cycle. In 
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the mature phase of AM symbiosis, guaiacol peroxidase has 
emerged as a key enzyme for scavenging hydrogen perox-
ide. Additionally, decreased expression of stilbene synthase 
(STS1) and increased expression of enhanced disease sus-
ceptibility (EDS1) genes suggest improved ROS scaveng-
ing in AMF-inoculated plants. These findings highlight the 
potential of AM symbiosis to alleviate virus-induced stress 
in grapevines.

Despite these findings, several critical gaps remain in our 
understanding of how AMF-driven metabolic changes trans-
late into consistent and durable resistance to a diverse array 
of pathogens. For instance, it remains unclear why certain 
AMF strains or communities confer more robust protection 
than others, or how the balance between SA-, ABA-, and 
JA-mediated pathways is fine-tuned to deter pathogens with-
out compromising the symbiotic relationship. Additionally, 
the extent to which AMF-induced priming can be reliably 
transferred to non-colonized tissues and how environmen-
tal factors influence these defense responses remain poorly 
understood. Similarly, although increase in stilbenoids, 
polyamines, and other defensive metabolites have been 
documented, the precise molecular regulation and signal-
ing networks underlying these responses have not been fully 
resolved. Addressing these open questions will be essen-
tial for leveraging AMF-mediated biotic stress tolerance in 
practical vineyard management to ensure more sustainable 
and resilient grape production under ever-changing biotic 
pressures.

Role of AMF on quality of grapes and wine

A vast array of primary and secondary metabolites contrib-
utes to the organoleptic properties of fruits, influencing fac-
tors, such as color, taste, and aroma. For instance, phenolic 
compounds play a significant role in grape production. Fruit 
pigmentation in grapevines results from the accumulation 
of anthocyanins in the skin of the berries (He et al. 2010). 
While increases in total phenolic content and anthocyanin 
levels due to AMF have been documented in various studies 
(Table 2), Torres et al. (2019) observed that these changes 
were not correlated with color density or tonality index in 
Vitis vinifera cv. Tempranillo grapes. Polyphenols accu-
mulate in the skin during grape ripening, and are the main 
compounds related to wine quality. Wine properties, such as 
color, flavor, and health benefits, are determined by diverse 
phenolic compounds, including anthocyanins, proanthocya-
nidins, and flavonols. Gabriele et al. (2016) demonstrated 
that AMF increase the content of phenolic compounds in 
Sangiovese wines. However, while monomeric anthocyanins 
were significantly reduced compared to the control plants, 
increases in other phenolic compounds were observed, 
including 3,4-dihydroxybenzoic acid, gallic acid, tyrosol, 

resveratrol, caffeic acid, quercetin, isorhamnetin, and mal-
vidin. In another study, Antolin et al. (2020) analyzed the 
effect of AMF on eight ancient grapevine cultivars (Tem-
pranillo, Vidadillo, Grand Noir, Tinto Velasco, Graciano, 
Morate, Pasera, Ambrosina). They observed that the total 
phenol index was reduced in the inoculated cultivars Tinto 
Velasco, Graciano, and Morate compared to non-AM plants; 
however, anthocyanins were increased in the majority of the 
cultivars analyzed.

Another quality factor of wine depends on the sugar 
and organic acid concentration in grapes, which deter-
mines the alcohol/acidity ratio and is also responsible 
for wine flavor balance (Ribéreau-Gayon et al. 2006). It 
has been observed that AMF increases their content in 
grapes, which is related to more alcoholic wines. Concern-
ing organic acid, it has been shown that AMF inoculation 
reduces malic acid concentration and leans toward lower 
titratable acidity (Karoglan et al. 2021). This trend has 
also been observed for other plant species. For example, 
titratable acidity tends to decrease in strawberries inocu-
lated with Septoglomus viscosum (Todeschini et al. 2018). 
However, Antolin et al. (2020) and Torres et al. (2021) did 
not find significant differences in the titratable acidity of 
musts in mycorrhizal grapevines compared with non-AM 
plants. Additionally, the authors did not observe any differ-
ences in the pH of musts associated with AMF inoculation 
in any of the grapevine cultivars assayed.

Torres et al. (2019) demonstrated changes in primary 
metabolism rather than secondary metabolism. Moreover, 
the authors reported that AMF increased the concentration 
of several amino acids in grape skin, which could induce 
changes in wine aroma, since amino acid-derived volatiles 
may play an important role in the organoleptic properties 
of wine (Hernández-Orte et al. 2002). Aromatic precursor 
amino acids, such as aspartic acid, isoleucine, phenylala-
nine, threonine, tyrosine, and valine, were significantly 
increased in the grapes of mycorrhizal plants (Torres et al. 
2019). However, increases in amino acids may enhance 
the concentrations of biogenic amines, including tyramine, 
phenylethylamine, and putrescine, which are present in 
musts (Wang et al. 2014).

Conclusions

In recent years, there has been growing interest in unraveling 
the intricate interactions between mycorrhizae and grape-
vines. Arbuscular mycorrhizal fungi (AMF) have been 
shown to modulate metabolic pathways, resulting in altera-
tions in gene expression, primary and secondary metabolites, 
and the induction of enzymes that scavenge reactive oxygen 
species (ROS). The most frequently reported transcriptomic 
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modifications are associated with sugar transporters, abscisic 
acid (ABA) metabolism, and various defense genes. Metabo-
lites, such as soluble sugars, proline, chlorophyll, and antho-
cyanins, are frequently reported to increase in AMF-inoc-
ulated plants. Some of these modifications contribute to an 
enhanced quality of grapes and wine, which deserves more 
attention in further research because AMF may influence 
the organoleptic properties of wine, such as residual sugars, 
volatile acidity, astringent sensation (tannins), and aroma. 
However, it is important to note that responses may vary 
depending on the grapevine genotype and the fungus used 
as the inoculum. As most studies have been conducted under 
greenhouse conditions, other factors, such as the inoculation 
period and the phenological state of the grapevine, may also 
influence transcriptomic and metabolic responses. Further 
research under field conditions is warranted to establish the 
optimal application of AMF and management of vineyards.
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